考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究

余万千 郁锐 崔世堂

余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究[J]. 爆炸与冲击, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334
引用本文: 余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究[J]. 爆炸与冲击, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334
YU Wanqian, YU Rui, CUI Shitang. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality[J]. Explosion And Shock Waves, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334
Citation: YU Wanqian, YU Rui, CUI Shitang. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality[J]. Explosion And Shock Waves, 2021, 41(3): 031404. doi: 10.11883/bzycj-2020-0334

考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究

doi: 10.11883/bzycj-2020-0334
详细信息
    作者简介:

    余万千(1994- ),男,硕士,助理工程师,hsywq812907@163.com

    通讯作者:

    郁 锐(1981- ),男,硕士,教授级高级工程师,1715516202@qq.com

  • 中图分类号: O347.3

On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality

  • 摘要: 30CrMnSiNi2A钢是一种在军工领域应用广泛的低合金高强度钢。针对结构完整性的评估问题,采用试验和数值计算结合的方法研究了30CrMnSiNi2A钢的韧性断裂特性。对光滑圆棒试件在不同温度下进行准静态和动态拉伸试验,并通过有限元迭代方法标定了材料的Johnson-Cook动态本构模型参数,分析了温度和应变率对30CrMnSiNi2A钢断裂行为的影响。开展了缺口圆棒拉伸、缺口平板剪切和圆柱压缩试验,计算了各试件对应的平均应力三轴度和断裂应变,给出了应力三轴度在−1/3~1.5区间内的断裂应变变化曲线,分别确定了Johnson-Cook和Bao-Wierzbicki失效模型参数。研究表明,30CrMnSiNi2A钢的断裂应变与应力状态密切相关,且在不同的应力三轴度区间内曲线单调性差异较大,Bao-Wierzbicki失效模型较好地描述了这种钢在不同应力状态下的断裂特性。
  • 图  1  异形试件尺寸(单位:mm)

    Figure  1.  Dimensions of abnormal specimens (unit: mm)

    图  2  高温下的应力应变曲线

    Figure  2.  Stress-strain curves at different temperatures

    图  3  载荷-位移曲线模拟值与试验值比较

    Figure  3.  Comparison of load-displacement curves between simulation and test

    图  4  试件等效应力云图

    Figure  4.  Equivalent stress distribution of specimens

    图  5  细长圆柱载荷-位移曲线

    Figure  5.  Load-displacement curves of thin cylinders

    图  6  45°缺口平板载荷-位移曲线

    Figure  6.  Load-displacement curves of butterfly plates

    图  7  各试件应力三轴度-等效塑性应变曲线

    Figure  7.  Evolution of stress triaxiality for various specimens

    图  8  断裂应变-应力三轴度曲线拟合

    Figure  8.  Fracture strain stress triaxiality curve fitting

    图  9  试件的断裂形态

    Figure  9.  Fractured specimens

    表  1  异形试件

    Table  1.   Abnormal specimens

    序号试件载荷数量应力三轴度范围
    aR4缺口圆棒拉伸3[1/3,+∞]
    bR2缺口圆棒拉伸3[1/3,+∞]
    c45°缺口平板拉伸4[0,1/3]
    d0°缺口平板拉伸4[0,1/3]
    e短粗圆柱压缩3[−1/3,0]
    f细长圆柱压缩3[−1/3,0]
    下载: 导出CSV

    表  2  30CrMnSiNi2A钢的化学成分(质量分数,%)

    Table  2.   Composition of 30CrMnSiNi2A steel (mass fraction, %)

    CCrMnSiNiCuPS
    0.3001.0301.1601.0401.6800.0800.0140.020
    下载: 导出CSV

    表  3  光滑圆棒试件的屈服应力和断裂应变

    Table  3.   Yield strength and fracture strain of round bars

    序号温度/K应变率/s−1屈服应力/MPa断裂应变
    12980.0011 1630.753
    22981 0001 5910.775
    32982 0001 7160.881
    42984 0001 8830.962
    54730.0011 1150.827
    67730.001 6981.513
    下载: 导出CSV

    表  4  平均应力三轴度和断裂应变对应表

    Table  4.   A summary of average stress triaxiality and equivalent plastic fracture strain

    序号应力三轴度理论值平均应力三轴度断裂应变
    1−1/3−0.246 31.203
    2−1/3−0.097 20.437
    30 0.013 60.281
    41/6 0.086 60.455
    51/3 0.609 40.753
    60.652 1.069 00.382
    70.893 1.353 00.337
    下载: 导出CSV
  • [1] 武海军, 姚伟, 黄风雷, 等. 超高强度钢30CrMnSiNi2A动态力学性能实验研究 [J]. 北京理工大学学报, 2010, 30(3): 258–262. DOI: 10.15918/j.tbit1001-0645.2010.03.002.

    WU H J, YAO W, HUANG F L, et al. Experimental study on dynamic mechanical properties of ultrahigh strength 30CrMnSiNi2A steel [J]. Transactions of Beijing Institute of Technology, 2010, 30(3): 258–262. DOI: 10.15918/j.tbit1001-0645.2010.03.002.
    [2] 周义清, 张治民. 30CrMnSiNi2A钢在不同应变率下的力学性能研究 [J]. 兵器材料科学与工程, 2010, 33(4): 46–50. DOI: 10.14024/j.cnki.1004-244x.2010.04.021.

    ZHOU Y Q, ZHANG Z M. Mechanical property of 30CrMnSiNi2A steel under various strain rates [J]. Ordnance Material Science and Engineering, 2010, 33(4): 46–50. DOI: 10.14024/j.cnki.1004-244x.2010.04.021.
    [3] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [4] HANCOCK J W, MACKENZIE A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states [J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2−3): 147–169. DOI: 10.1016/0022-5096(76)90024-7.
    [5] MIRZA M S, BARTON D C, CHURCH P. The effect of stress triaxiality and strain-rate on the fracture characteristics of ductile metals [J]. Journal of Materials Science, 1996, 31(2): 453–461. DOI: 10.1007/BF01139164.
    [6] CLAUSEN A H, BORVIK T, HOPPERSTAD O S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality [J]. Materials Science and Engineering: A, 2004, 364(1−2): 260–272. DOI: 10.1016/j.msea.2003.08.027.
    [7] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006.
    [8] 李营, 吴卫国, 朱海清, 等. 基于大范围应力三轴度的船用低碳钢断裂特性研究 [J]. 中国造船, 2016, 57(3): 54–64. DOI: 10.3969/j.issn.1000-4882.2016.03.007.

    LI Y, WU W G, ZHU H Q, et al. Fracture properties of ship-build mild steel in wide range of stress triaxiality [J]. Shipbuilding of China, 2016, 57(3): 54–64. DOI: 10.3969/j.issn.1000-4882.2016.03.007.
    [9] 张朴, 赵明艳, 李营, 等. 复杂应力状态下船用低碳钢断裂应变的“断崖现象” [J]. 船舶力学, 2020, 24(2): 191–196. DOI: 10.3969/j.issn.1007-7294.2020.02.008.

    ZHANG P, ZHAO M Y, LI Y, et al. Failure strain sharp-down of marine mild steel under complex stress states [J]. Journal of Ship Mechanics, 2020, 24(2): 191–196. DOI: 10.3969/j.issn.1007-7294.2020.02.008.
    [10] 桂良进, 高付海, 范子杰. 先进高强度钢的断裂失效准则研究 [J]. 固体力学学报, 2012, 33(4): 395–403. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2012.04.007.

    GUI L J, GAO F H, FAN Z J. Study of failure criterion of advanced high strength steel [J]. Chinese Journal of Solid Mechanics, 2012, 33(4): 395–403. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2012.04.007.
    [11] MAE H, TENG X, BAI Y, et al. Calibration of ductile fracture properties of a cast aluminum alloy [J]. Materials Science and Engineering: A, 2007, 459(1/2): 156–166. DOI: 10.1016/j.msea.2007.01.047.
    [12] 朱浩, 朱亮, 陈剑虹. 应力三轴度和应变率对6063铝合金力学性能的影响及材料表征 [J]. 材料科学与工程学报, 2007, 25(3): 358–362. DOI: 10.3969/j.issn.1673-2812.2007.03.009.

    ZHU H, ZHU L, CHEN J H. Influence of stress triaxiality and strain rate on the mechanics behavior of 6063 aluminum alloy and material characterization [J]. Journal of Materials Science & Engineering, 2007, 25(3): 358–362. DOI: 10.3969/j.issn.1673-2812.2007.03.009.
    [13] BAO Y B, WIERZBICKI T. A comparative study on various ductile crack formation criteria [J]. Journal of Engineering Materials and Technology, 2004, 126(3): 314–324. DOI: 10.1115/1.1755244.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  315
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-10-12
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回