Experimental study on penetration of non-circular cross-section long-rod projectiles into semi-infinite metal target
-
摘要: 为了研究截面形状对长杆弹侵彻半无限金属靶板的最终侵彻深度的影响规律,开展了截面形状为圆形、三角形、正方形、十字形的等截面积的长杆弹侵彻半无限厚靶板的实验研究。实验分为两组,分别为长径比为8、弹芯材料为93钨合金的长杆弹侵彻装甲钢靶板实验以及长径比为15、弹芯材料为45钢的长杆弹垂直侵彻45钢靶板实验。实验后得到不同截面形状、不同长径比、不同弹靶材料的长杆弹在不同着靶速度下的侵彻深度。结果表明:三种异型截面长杆弹的侵彻能力均高于相同工况下的圆形截面长杆弹,且其中十字形截面长杆弹侵彻能力最优,正方形截面次之。通过对实验结果的宏观分析,得到三种异型截面长杆弹的截面形状对长杆弹侵彻半无限靶板侵彻威力的影响规律以及侵彻机理的宏观表现。Abstract: To study the influences of the cross-sectional shapes on the final depths of penetration, a series of experiments were carried out on the penetration of long-rod projectiles with the same cross-sectional area different cross-sectional shapes into semi-infinite metal targets. The cross-sectional shapes were machined to be circular, square and cross, respectively. These experiments were divided into two groups. In one group of experiments, the long-rod projectiles with the aspect ratio of 8 and 93W alloy cores penetrated into armor-steel target plates. In another group of experiments, the long-rod projectiles with the aspect ratio of 15 and 45 steel cores penetrated into the 45 steel target plates. Depths of penetration under different impact velocities were experimentally obtained for different cross-sectional shapes, aspect ratios, and materials of projectiles and targets, respectively. Experimental results display that the penetration abilities of the three kinds of long-rod projectiles with non-circular cross-section are higher than that of the long-rod projectiles with circular cross-section under the same working conditions. And among the four kinds of long-rod projectiles, the penetration ability of the long-rod projectiles with cross section is the highest, followed by that of the long-rod projectiles with square section. With the increase of the impact velocity, the penetration gains of the cross and square cross-section long-rod projectiles to the circular cross-section ones increase. The cross-section shape of craters penetrated by the triangular cross-section long-rod projectiles takes on arc triangle, and the cross-section shape of craters penetrated by the long-rod projectiles with square and cross sections, respectively, takes on approximate circle. After penetration of the three kinds of non-circular cross-section long-rod projectiles, cracks at certain angles with the axial direction appear in the mushroomed heads of the projectile bodies, which leading to less resistance encountered by the projectiles in the process of penetration. The reason, why the penetration abilities of three kinds of non-circular cross-section long-rod projectiles are higher than that of the circular-section long-rod projectiles, is their structural self-sharpening in the process of penetration.
-
Key words:
- long-rod projectiles /
- non-circular cross-section /
- influence law /
- dimensional analysis
-
表 1 各物理量的量纲
Table 1. Dimension of each physical quantity
物理量 M L T ${\ \rho _{\rm{p} } }$ 1 −3 0 L 0 1 0 v 0 1 −1 ${\sigma _{\rm{p}}}$ 1 −1 −2 ${\sigma _{\rm{t}}}$ 1 −1 −2 ${E_{\rm{p}}}$ 1 −1 −2 ${E_{\rm{t}}}$ 1 −1 −2 $\ {\rho _{\rm{t} } }$ 1 −3 0 表 2 各物理量量纲(变换后)
Table 2. Dimension of each physical quantity (after change)
物理量 ρp L V ${\ \rho _{\rm{p} } }$ 1 0 0 L 0 1 0 v 0 0 1 ${\sigma _{\rm{p}}}$ 1 0 2 ${\sigma _{\rm{t}}}$ 1 0 2 ${E_{\rm{p}}}$ 1 0 2 ${E_{\rm{t}}}$ 1 0 2 ${\ \rho _{\rm{t} } }$ 1 0 0 表 3 弹芯尺寸
Table 3. Projectile dimensions
序号 截面形状 材料 L/mm D*/mm T/mm U/mm 1 圆形 93钨合金 64 8 − − 2 三角形 93钨合金 64 8 10.77 − 3 正方形 93钨合金 64 8 7.09 − 4 十字形 93钨合金 64 8 8.08 4.2 5 圆形 45钢 90 6 − − 6 三角形 45钢 90 6 8.08 − 7 正方形 45钢 90 6 5.32 − 8 十字形1 45钢 90 6 3.16 6.06 9 十字形2 45钢 90 6 6.67 4.27 注:D*为等效圆直径,表达式为$D^{*}=\sqrt {4S/{\text{π } } }$;S为弹芯截面积。 表 4 实验结果
Table 4. Experimental results
序号 弹芯材料 靶板材料 截面形状 着靶速度/(m·s−1) 侵彻深度/mm 序号 弹芯材料 靶板材料 截面形状 着靶速度/(m·s−1) 侵彻深度/mm 1 93W 603钢 圆形 1615 68.0 25 45钢 45钢 圆形 1538 42.5 2 93W 603钢 三角形 1429 53.0 26 45钢 45钢 圆形 1719 55.0 3 93W 603钢 三角形 1462 54.5 27 45钢 45钢 圆形 1747 53.8 4 93W 603钢 三角形 1596 69.3 28 45钢 45钢 三角形 1288 27.5 5 93W 603钢 三角形 1601 64.9 29 45钢 45钢 三角形 1298 25.5 6 93W 603钢 正方形 1371 54.7 30 45钢 45钢 三角形 1371 25.5 7 93W 603钢 正方形 1374 54.7 31 45钢 45钢 三角形 1548 44.0 8 93W 603钢 正方形 1467 54.5 32 45钢 45钢 三角形 1558 41.5 9 93W 603钢 正方形 1489 60.0 33 45钢 45钢 三角形 1695 53.5 10 93W 603钢 正方形 1625 76.0 34 45钢 45钢 正方形 1376 36.0 11 93W 603钢 正方形 1639 72.0 35 45钢 45钢 正方形 1388 35.5 12 93W 603钢 正方形 1642 75.5 36 45钢 45钢 正方形 1401 32.0 13 93W 603钢 十字形 1388 52.0 37 45钢 45钢 正方形 1412 34.0 14 93W 603钢 十字形 1415 54.2 38 45钢 45钢 正方形 1582 46.0 15 93W 603钢 十字形 1452 60.0 39 45钢 45钢 正方形 1589 50.0 16 93W 603钢 十字形 1473 60.7 40 45钢 45钢 正方形 1702 63.0 17 93W 603钢 十字形 1495 63.5 41 45钢 45钢 十字形1 1358 15.5 18 93W 603钢 十字形 1571 67.0 42 45钢 45钢 十字形1 1464 15.5 19 93W 603钢 十字形 1593 75.8 43 45钢 45钢 十字形1 1472 15.0 20 45钢 45钢 圆形 1317 26.5 44 45钢 45钢 十字形1 1502 51.0 21 45钢 45钢 圆形 1335 24.5 45 45钢 45钢 十字形1 1718 66.0 22 45钢 45钢 圆形 1423 32.5 46 45钢 45钢 十字形2 1469 17.0 23 45钢 45钢 圆形 1478 35.0 47 45钢 45钢 十字形2 1445 16.5 24 45钢 45钢 圆形 1516 37.0 48 45钢 45钢 十字形2 1445 15.5 -
[1] 王猛. 细晶钨合金穿甲弹芯侵彻机理分析及试验研究[D]. 南京: 南京理工大学, 2013: 79−105. [2] 杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from Wf/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313. [3] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007. [4] CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/S1359-6462(01)01134-4. [5] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007.PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. DOI: 10.3969/j.issn.1000-1093.2015.01.007. [6] 邓佳杰, 张先锋, 刘闯, 等. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型 [J]. 爆炸与冲击, 2018, 38(6): 1231–1240. DOI: 10.11883/bzycj-2017-0413.DENG J J, ZHANG X F, LIU C, et al. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target [J]. Explosion and Shock Waves, 2018, 38(6): 1231–1240. DOI: 10.11883/bzycj-2017-0413. [7] ZHANG S, WU H J, ZHANG X X, et al. High-velocity penetration of concrete targets with three types of projectiles: experiments and analysis [J]. Latin American Journal of Solids and Structures, 2017, 14(9): 1614–1628. DOI: 10.1590/1679-78253753. [8] 梁斌, 陈小伟, 姬永强, 等. 先进钻地弹概念弹的次口径高速深侵彻实验研究 [J]. 爆炸与冲击, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09.LIANG B, CHEN X W, JI Y Q, et al. Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon [J]. Explosion and Shock Waves, 2008, 28(1): 1–9. DOI: 10.11883/1001-1455(2008)01-0001-09. [9] 张奎华, 沈培辉, 杜忠华. 变截面长杆对半无限靶的侵彻特性分析 [J]. 弹箭与制导学报, 2006, 26(4): 135–136, 139. DOI: 10.3969/j.issn.1673-9728.2006.04.042.ZHANG K H, SHEN P H, DU Z H. Analysis of variational section long-rods into semi-infinite targets [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(4): 135–136, 139. DOI: 10.3969/j.issn.1673-9728.2006.04.042. [10] 董玉财. 管-杆伸出式侵彻体侵彻机理及相关问题研究[D]. 南京: 南京理工大学, 2014: 14−77. [11] GARON K, FAMINU O. Aeroballistic range tests of missiles with non-circular cross sections[C]// 41st Aerospace Sciences Meeting and Exhibit. Reno: American Institute of Aeronautics and Astronautics, 2003: 1-10. DOI: 10.2514/6.2003-1243. [12] 易文俊, 王中原, 杨凯, 等. 三角形截面弹丸的飞行性能研究 [J]. 弹道学报, 2007, 19(2): 5–7, 20. DOI: 10.3969/j.issn.1004-499X.2007.02.002.YI W J, WANG Z Y, YANG K, et al. Research of flight characteristics of projectile with triangular cross-section [J]. Journal of Ballistics, 2007, 19(2): 5–7, 20. DOI: 10.3969/j.issn.1004-499X.2007.02.002. [13] BLESS S J, LITTLEFIELD D L, ANDERSON JR C E, et al. The penetration of non-circular cross-section penetrators [C] // 15th International Symposium on Ballistics. Jerusalem: IBS, 1995: 43−50. [14] 曾国强. 异型弹芯侵彻性能的研究[D]. 南京: 南京理工大学, 2006: 21−27. [15] 杜忠华, 曾国强, 余春祥, 等. 异型侵彻体垂直侵彻半无限靶板试验研究 [J]. 弹道学报, 2008, 20(1): 19–21.DU Z H, ZENG G Q, YU C X, et al. Experimental research of novel penetrator vertically penetrating semi-infinite target [J]. Journal of Ballistics, 2008, 20(1): 19–21. [16] 荣光, 孙瑞胜, 薛晓中, 等. 两种非圆截面弹芯的侵彻性能研究 [J]. 兵工学报, 2009, 30(4): 385–388. DOI: 10.3321/j.issn:1000-1093.2009.04.001.RONG G, SUN R S, XUE X Z, et al. Penetration performance study on two kinds of non-circular cross-sectional projectiles [J]. Acta Armamentarii, 2009, 30(4): 385–388. DOI: 10.3321/j.issn:1000-1093.2009.04.001. [17] ROSENBERG Z, DEKEL E. A computational study of the relations between material properties of long-rod penetrators and their ballistic performance [J]. International Journal of Impact Engineering, 1998, 21(4): 283–296. DOI: 10.1016/S0734-743X(97)00068-7.