A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials
-
摘要: 高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。Abstract: The strain rate during the process of high speed impact surface treatments has a significant effect on the mechanical properties as well as the microstructures of metallic materials. In this paper, the effects of strain rate during the process of high speed impact surface treatments on the variation of both strength and ductility of metallic materials are reviewed from macroscopic and microscopic prospective based on the current research achievements. The emphases are concentrated on the microstructural evolution under various strain rates, including grain structures, adiabatic shear bands, phases, dislocation structures, precipitates and deformation twins. At relatively low strain rates, grains tend to be elongated with respect to the loading direction, and they may be refined when the strain increases to a certain extent. In comparison, with the increment of strain rates, the free path of dislocation motion is remarkably reduced so that grains can be further refined to consume the impact energy and dislocations are multiplied significantly. However, the relatively high strain rates may also bring about adiabatic temperature rise and frictional heat, which may give rise to dynamic recovery and recrystallization in some materials so that the dislocation density would in turn be reduced. Moreover, precipitates can be formed and they may interact with dislocations owing to the combined effects of high strain rates and temperature rise. When the strain rates increase to the extremely high level, the movement of dislocations may be inhibited and deformation twins can be triggered to coordinate the deformation. As a result, the strain rate effects are complicated phenomena which comprehensively affect the microstructural strengthening and softening effects. Based on these, the influences of both microstructural evolution and the transition of microscopic deformation mechanisms with strain rates on the enhancement and deterioration of mechanical properties are analyzed. Finally, the characteristics of deformation mechanisms of the gradient microstructures derived from high velocity impact surface treatments are concluded. Furthermore, a comprehensive model embodying the influences of different microstructures is proposed, which can provide a foundation for the further researches of strain rate effects.
-
爆炸焊接是一种以炸药爆炸能量驱动,通过飞板加速碰撞基板,结合而直接焊接两层或多层异种金属的复合技术[1]。这种焊接的强度往往是其他技术所不能达到的,爆炸复合板广泛应用于化工、造船、核工业、航空航天等工业领域。
爆炸焊接的最大优势在于大尺寸、异种金属的焊接复合。由于炸药爆炸产生的瞬时高温高压,对一些厚度很薄的金属箔材(特别是厚度在1 mm以下的薄板)和变形性很差的脆性材料、超硬材料,在焊接时通常要进行许多特殊的处理,而且焊接效果不太理想,复合板整体或局部断裂、薄片屈曲、复合率不高等缺点限制了爆炸焊接在此类特殊材料上的应用。近年来,开发了水下爆炸焊接方法,并且成功应用于铝箔(0.1 mm)与ZrO2陶瓷[2]、不锈钢与非晶薄板(38 μm) [3]、铜板与钨箔(0.5 mm)[4]、NiTi形状记忆合金与铜箔(0.5 mm)[5]等特殊难焊材料的焊接实验。对比水下冲击波和空气冲击波各自的特点,可以发现:(1)水的可压缩性小,消耗本身的变形能少,传压性稳定,水中爆炸所产生的初始冲击波压力比空气中大很多;(2)密度差异会导致惯性大,水下爆轰产物膨胀过程比空气中慢,产生多次膨胀和压缩;(3)水的声速(1 500 m/s)比空气的声速(334 m/s)大,在相同药量和距离下,水下冲击波对目标体作用的时间短、冲量大。这些特点表明,水下冲击波将在一些特殊领域完善对传统空气爆炸加工的应用。水下爆炸焊接的优点,可以概括为:(1)当炸药爆轰波直接作用于待焊板材,很容易导致此类材料的破碎,而水下爆炸焊接法由于以水为传压介质,可以得到均匀的水下冲击波加载压力,且压力在炸药爆轰压力下可调,便于寻找最优焊接参数,实现均匀完整的焊接复合;(2)使用传统爆炸焊接对金属箔材焊接时,往往需要通过添加介质缓冲层、固定或镶嵌金属箔材等特殊处理,来实现复合。在水下爆炸焊接中,由于基、复板上下都有水层保护,能够有效缓冲压力波,防止大变形,保持焊接材料的完整性。
本文中,利用水下爆炸焊接方法开展合金工具钢与铜箔的焊接复合实验。其中,合金工具钢JIS SKS3为高硬度脆性材料,铜箔为薄材。传统爆炸焊接中炸药直接加载飞板,可以利用格尼(Gurney)公式[6]、Aziz一维飞板驱动公式[7]等估算飞板的加速过程以及基复板的碰撞速度。但是,在水下爆炸焊接中,由于炸药和复板之间水层的存在,爆轰波先在水中传播,形成水下冲击波,然后在水下冲击波的驱动下加速飞板,形成焊接。所以,现有的飞板运动(加速过程、终速大小)计算规律不能直接应用于水下爆炸焊接,需对水下爆炸焊接进行数值模拟。利用数值模拟,可以分析炸药爆轰后冲击波在水下的传播过程、飞板的加速过程以及飞板与基板的碰撞变形过程,可以计算基复板的碰撞速度,保证碰撞速度满足爆炸焊接窗口理论。
1. 实验
实验材料为日本产JIS SKS3合金工具钢,主要成分为Fe,其他成分含量为:w(C)=1.0%,w(Si)=0.3%,w(Mn)=1.0%,w(Cr)=0.8%,w(W)=0.8%。工具钢尺寸为60 mm× 60 mm × 25 mm,作为基板,铜箔尺寸为60 mm × 60 mm × 0.5 mm,作为飞板。日本产高爆速防水SEP炸药成分为w(PETN)=65%、w(石蜡)=35%,密度约1 300 kg/m3、爆速约7 000 m/s。爆炸焊接的焊接速度小于材料的声速,本实验采用倾斜装药,倾角预设为20°,整体装置模型如图 1所示。药厚为5 mm,铜箔与合金工具钢的间距设为0.2 mm,用防水胶布密封飞板和基板。实验在水中完成,使用电雷管从左端起爆炸药。
2. 数值模拟
利用有限元软件ANASYS/LS-DYNA对炸药爆轰、水下冲击波传播以及驱动飞板与基板碰撞过程进行模拟,炸药、水、基复板各模型如图 2所示。炸药尺寸12 cm×0.5 cm,倾斜角20°,飞板6 cm×0.5 cm,基板6 cm×2.5 cm,飞板与基板间隔0.02 cm。网格划分为0.05 cm×0.05 cm。
炸药采用高爆燃材料模型和JWL状态方程。JWL方程的形式为:
p=A(1−ωR1V)e−R1V+B(1−ωR2V)e−R2V+ωEV 式中:A、B、R1、R2和ω为炸药参数,相对体积V=v/v0,v为体积,v0为初始体积,E为单位体积内能。
SEP炸药状态方程参数如下:ρ=1.310 g/m3, D=6 970 m/s,A=365.0 GPa,B=2.310 GPa,R1=4.30,R2=1.0,ω=0.280,pCJ=15.9 GPa[8]。
水的密度为1 g/cm3,采用空材料模型和Grüneisen状态方程。材料压缩和膨胀的Grüneisen状态方程形式分别为:
ppre=ρ0c2μ[1+(1−γ0/2)μ−αμ2/2][1−(S1−1)μ−S2μ2/(μ+1)−S3μ3/(μ+1)2]2+(γ0+αμ)E pexp=ρ0c2μ+(γ0+αμ)E 式中:c为vs-vp曲线的截距,S1、S2、S3为vs-vp曲线的斜率参数,γ0为Grüneisen常数,α为Grüneisen常数γ0的修正系数,μ=ρ/ρ0-1,ρ为密度,ρ0为初始密度,E为单位体积内能。
飞板与基板均选用Johnson-Cook材料模型[9]和Grüneisen状态方程[10]。Johnson-Cook材料模型的形式为:
σy=(A+Bˉεnp)(1+Cln˙ε∗)(1−T∗m) 式中:A、B、C、m和n为材料常数,εp为等效塑性应变,˙ε为等效应变率,T*=(T-Tr)/(Tm-Tr),T为温度,Tr为实验初始温度,Tm为熔点温度。
图 3为水下爆炸焊接过程中飞板与基板在水下冲击波作用下的变形过程以及压力分布情况。炸药爆轰后,冲击波传入水中,形成水下冲击波,飞板在水下冲击波作用下向下加速与基板碰撞,碰撞点附近压力剧增,同时向水中形成反射波。因此,在飞板与基板的焊接过程中,可以观察到反射波和碰撞点压力分布显现出两个峰值。图 4为水下爆炸焊接过程中复板随时间的变形过程。可以看到,复板从左端开始向基板碰撞,直到复板与基板完成焊接,大约需要20 μs。
在炸药稳定爆轰后,分别选取飞板各段节点进行分析,绘制速度时程曲线如图 5。在飞板前段,速度大约为400 m/s。沿着爆轰方向,速度逐渐减小,在后端速度大约为300 m/s。对照文献[11]的双金属爆炸焊接下限条件,可以看出,300~400 m/s可以满足大多数金属材料的飞板速度下限要求。
3. 实验结果分析
3.1 界面形貌观察
工具合金钢SKS 3与铜箔界面形貌如图 6。从图 6可以看出,焊接区域结合紧密,呈现规律和连续的正弦波状结合形态,没有产生明显孔洞和脆性金属间化合物,获得优良的结合强度。典型的波状界面表明,焊接参数的正确性和焊接强度的可靠性。沿着爆轰方向,焊接界面在开始阶段5 cm处,波纹振幅大约为16 μm,然后逐渐减小,在后端表现为平直界面。由于采用了倾斜安置法进行水下爆炸焊接,飞板从前端到后端与炸药的距离逐渐增大,导致爆轰能量随着焊接方向逐渐减小。在爆炸焊接中,随着爆炸能量的增大,焊接板材受影响的深度增加,而射流层的厚度增厚,爆炸焊接界面会由平直界面逐渐转变为波状界面[12-17]。反之,用倾斜安置法进行爆炸焊接实验时,各个位置的能量不同,导致界面形态的变化。一组实验可以得到不同的实验结果,这有益于爆炸焊接的研究。
3.2 界面显微硬度分析
在载荷10 g的HM-102上进行显微硬度分析,基覆板显微硬度与界面距离的变化关系曲线如图 7。铜层与合金钢SKS3硬度分布变化平稳,靠近界面处硬度稍微增加。爆炸焊接中,由于界面处金属强烈的塑性变形,细晶强化、冷作硬化、位错增加等原因导致硬度在靠近界面处达到峰值,随着远离界面而减小,在基体中达到稳定。在界面上,由于两种金属的混合,硬度值介于两种金属之间。
4. 结论
高硬度合金工具钢JIS SKS3和铜箔,可通过水下爆炸焊接成功复合。可以看出,水下爆炸焊接高硬度、薄板材料具有很好的焊接效果,这正是传统焊接方法的难点。
(1) 利用有限元软件ANASYS/LS-DYNA预测水下爆炸焊接过程,得到基覆板的变形和焊接过程中的压力分布以及速度分布,弥补传统经验公式在水下爆炸焊接中的不足。
(2) 典型的波状界面表明焊接参数的合理性和焊接强度的可靠性。
(3) 倾斜爆炸焊接装置导致的界面形态的变化,与模拟结果预测一致。
(4) 显微硬度显示基复板在靠近界面处硬度值达到峰值。
-
-
[1] BOBBILI R, RAMAKRISHNA B, MADHU V, et al. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures [J]. Defence Technology, 2015, 11(1): 93–98. DOI: 10.1016/j.dt.2014.08.004. [2] PRAKASH G, SINGH N K, GUPTA N K. Deformation behaviours of Al2014-T6 at different strain rates and temperatures [J]. Structures, 2020, 26: 193–203. DOI: 10.1016/j.istruc.2020.03.068. [3] GRACIO J J, BARLAT F, RAUCH E, et al. A review of the relationship between microstructural features and the stress-strain behavior of metals [J]. Materialwissenschaft und Werkstofftechnik, 2005, 36(10): 572–577. DOI: 10.1002/mawe.200500916. [4] MIKHAYLOVSKAYA A, YAKOVTSEVA O, SITKINA M, et al. Grain-boundary and intragranular deformation in ultrafine-grained aluminum-based alloy at high strain rate [J]. Materials Letters, 2020, 276: 128242. DOI: 10.1016/j.matlet.2020.128242. [5] 惠旭龙, 白春玉, 刘小川, 等. 宽应变率范围下2A16-T4铝合金动态力学性能 [J]. 爆炸与冲击, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08.HUI X L, BAI C Y, LIU X C, et al. Dynamic mechanical properties of 2A16-T4 aluminum alloy at wide-ranging strain rates [J]. Explosion and Shock Waves, 2017, 37(5): 871–878. DOI: 10.11883/1001-1455(2017)05-0871-08. [6] 惠旭龙, 白春玉, 葛宇静, 等. 2A16铝合金中应变率力学性能研究 [J]. 振动与冲击, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010.HUI X L, BAI C Y, GE Y J, et al. Dynamic properties of 2A16 aluminum alloy under intermediate strain rate [J]. Journal of Vibration and Shock, 2017, 36(19): 66–70. DOI: 10.13465/j.cnki.jvs.2017.19.010. [7] EL-ATY A A, XU Y, ZHANG S H, et al. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy [J]. Journal of Advanced Research, 2019, 18: 19–37. DOI: 10.1016/j.jare.2019.01.012. [8] ANDRADE U R, MEYERS M A, CHOKSHI A H. Constitutive description of work- and shock-hardened copper [J]. Scripta Metallurgica et Materialia, 1994, 30(7): 933–938. DOI: 10.1016/0956-716X(94)90418-9. [9] JOHNSON G R, HOLMQUIST T J. Evaluation of cylinder-impact test data for constitutive model constants [J]. Journal of Applied Physics, 1988, 64(8): 3901–3910. DOI: 10.1063/1.341344. [10] RULE W K, JONES S E. A revised form for the Johnson−Cook strength model [J]. International Journal of Impact Engineering, 1998, 21(8): 609–624. DOI: 10.1016/S0734-743X(97)00081-X. [11] 高宁, 朱志武. 铝合金应变率效应综述及其机理研究 [J]. 应用数学和力学, 2014, 35(S1): 208–212.GAO N, ZHU Z W. Study on the strain rate effects and mechanisms for aluminum alloys [J]. Applied Mathematics and Mechanics, 2014, 35(S1): 208–212. [12] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024. [13] JIAO M Y, MA L F, JIA W T, et al. A new phenomenological model describing the compressive thermal deformation flow stress of cast-rolled AZ31B Mg alloy [J]. Materials Research Express, 2019, 6(9): 096597. DOI: 10.1088/2053-1591/ab30ae. [14] ZERILLI F J, ARMSTRONG R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. Journal of Applied Physics, 1990, 68(4): 1580–1591. DOI: 10.1063/1.346636. [15] ZERILLI F J, ARMSTRONG R W. The effect of dislocation drag on the stress-strain behavior of FCC metals [J]. Acta Metallurgica et Materialia, 1992, 40(8): 1803–1808. DOI: 10.1016/0956-7151(92)90166-C. [16] 马鸣图, 李洁, 赵岩, 等. 汽车用金属材料在高应变速率下响应特性的研究进展 [J]. 机械工程材料, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001.MA M T, LI J, ZHAO Y, et al. Research progress of response characteristics of metallic materials for automotive under high strain rates [J]. Materials for Mechanical Engineering, 2017, 41(9): 1–13, 24. DOI: 10.11973/jxgccl201709001. [17] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144.ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-j2009-144. [18] 卢泓昱, 刘志奇, 宋建丽, 等. 花键冷敲成形本构关系研究 [J]. 太原科技大学学报, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005.LU H Y, LIU Z Q, SONG J L, et al. Study of constitutive relation in cold rolling spline [J]. Journal of Taiyuan University of Science and Technology, 2015, 36(3): 184–189. DOI: 10.3969/j.issn.1673-2057.2015.03.005. [19] KIM J B, SHIN H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature [J]. International Journal of Impact Engineering, 2009, 36(5): 746–753. DOI: 10.1016/j.ijimpeng.2008.11.003. [20] 刘旭红, 黄西成, 陈裕泽, 等. 强动载荷下金属材料塑性变形本构模型评述 [J]. 力学进展, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184.LIU X H, HUANG X C, CHEN Y Z, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading [J]. Advances in Mechanics, 2007, 37(3): 361–374. DOI: 10.6052/1000-0992-2007-3-J2006-184. [21] HATAMLEH O. The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum [J]. Journal of Materials Engineering and Performance, 2008, 17(5): 688–694. DOI: 10.1007/s11665-007-9163-7. [22] KHUN N W, TRUNG P Q, BUTLER D L. Mechanical and tribological properties of shot-peened SAE 1070 steel [J]. Tribology Transactions, 2016, 59(5): 932–943. DOI: 10.1080/10402004.2015.1121313. [23] CHEN A Y, JIA Y Q, PAN D, et al. Reinforcement of laser-welded stainless steels by surface mechanical attrition treatment [J]. Materials Science and Engineering: A, 2013, 571: 161–166. DOI: 10.1016/j.msea.2013.02.018. [24] 韩梅, 喻健, 李嘉荣, 等. 喷丸对DD6单晶高温合金拉伸性能的影响 [J]. 材料工程, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191.HAN M, YU J, LI J R, et al. Influence of shot peening on tensile properties of DD6 single crystal superalloy [J]. Journal of Materials Engineering, 2019, 47(8): 169–175. DOI: 10.11868/j.issn.1001-4381.2019.000191. [25] 朱敏, 吴桂林, 李玉胜, 等. 旋转加速喷丸处理18CrNiMo7-6钢的微观结构与力学性能 [J]. 材料导报, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014.ZHU M, WU G L, LI Y S, et al. Microstructure and mechanical properties of 18CrNiMo7-6 steel processed by rotationally accelerated shot peening [J]. Materials Reports, 2018, 32(10): 1645–1649, 1662. DOI: 10.11896/j.issn.1005-023X.2018.10.014. [26] KUMAR S, RAO G S, CHATTOPADHYAY K, et al. Effect of surface nanostructure on tensile behavior of superalloy IN718 [J]. Materials & Design, 2014, 62: 76–82. DOI: 10.1016/j.matdes.2014.04.084. [27] YANG C, LIU Y G, SHI Y H, et al. Microstructure characterization and tensile properties of processed TC17 via high energy shot peening [J]. Materials Science and Engineering: A, 2020, 784: 139298. DOI: 10.1016/j.msea.2020.139298. [28] ZHOU W F, REN X D, YANG Y, et al. Tensile behavior of nickel with gradient microstructure produced by laser shock peening [J]. Materials Science and Engineering: A, 2020, 771: 138603. DOI: 10.1016/j.msea.2019.138603. [29] LU K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345(6203): 1455–1456. DOI: 10.1126/science.1255940. [30] WU X L, JIANG P, CHEN L, et al. Synergetic strengthening by gradient structure [J]. Materials Research Letters, 2014, 2(4): 185–191. DOI: 10.1080/21663831.2014.935821. [31] YANG X C, MA X L, MOERING J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper [J]. Materials Science and Engineering: A, 2015, 645: 280–285. DOI: 10.1016/j.msea.2015.08.037. [32] 高玉魁. 表面完整性理论与应用[M]. 北京: 化学工业出版社, 2014: 4−9. [33] FENG X, SUN Y P, ZHOU S P, et al. Influence of strain rate on microstructures and mechanical properties of 2524Al alloy fabricated by a novel large strain rolling [J]. Materials Research Express, 2020, 7(2): 026519. DOI: 10.1088/2053-1591/ab70e0. [34] ZHANG S W, ZHANG D W, WANG Y F, et al. The planetary rolling process of forming the internal thread [J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(7-8): 3543–3551. DOI: 10.1007/s00170-020-05289-8. [35] 高玉魁, 柳鸿飞. 低塑性抛光技术对材料表面完整性影响的研究进展 [J]. 航空制造技术, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014.GAO Y K, LIU H F. Research progress of low plasticity burnishing on surface integrity of materials [J]. Aeronautical Manufacturing Technology, 2019, 62(18): 14–22. DOI: 10.16080/j.issn1671-833x.2019.18.014. [36] 孟丽君. 应变速率对强塑性变形晶粒细化的影响[D]. 太原: 太原理工大学, 2006: 27−43. [37] LI Y S, LI L Z, NIE J F, et al. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures [J]. Journal of Materials Research, 2017, 32(23): 4443–4451. DOI: 10.1557/jmr.2017.310. [38] LIU W B, JIN X, ZHANG B, et al. A coupled EBSD/TEM analysis of the microstructure evolution of a gradient nanostructured ferritic/martensitic steel subjected to surface mechanical attrition treatment [J]. Materials, 2019, 12(1): 140. DOI: 10.3390/ma12010140. [39] YANG Y, ZHANG H, QIAO H C. Microstructure characteristics and formation mechanism of TC17 titanium alloy induced by laser shock processing [J]. Journal of Alloys and Compounds, 2017, 722: 509–516. DOI: 10.1016/j.jallcom.2017.06.127. [40] ZHANG X D, HANSEN N, GAO Y K, et al. Hall-Petch and dislocation strengthening in graded nanostructured steel [J]. Acta Materialia, 2012, 60(16): 5933–5943. DOI: 10.1016/j.actamat.2012.07.037. [41] CHEN M W, MA E, HEMKER K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300(5623): 1275–1277. DOI: 10.1126/science.1083727. [42] XIAO X D, SUN Y, YANG Z C, et al. Dynamic response of target with different peening media [J]. Surface Engineering, 2020, 36(4): 386–396. DOI: 10.1080/02670844.2019.1624302. [43] GURAO N P, KAPOOR R, SUWAS S. Texture evolution in high strain rate deformed Cu-10Zn alloy [J]. Materials Science and Engineering: A, 2012, 558: 761–765. DOI: 10.1016/j.msea.2012.07.112. [44] PANDEY A, KHAN A S, KIM E Y, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates [J]. International Journal of Plasticity, 2013, 41: 165–188. DOI: 10.1016/j.ijplas.2012.09.006. [45] CANOVA G R, FRESSENGEAS C, MOLINARI A, et al. Effect of rate sensitivity on slip system activity and lattice rotation [J]. Acta Metallurgica, 1988, 36(8): 1961–1970. DOI: 10.1016/0001-6160(88)90298-2. [46] TAO X F, GAO Y K, KANG J M, et al. Softening effects induced by shot peening for an aluminum-lithium alloy [J]. Metallurgical and Materials Transactions A, 2020, 51(1): 410–418. DOI: 10.1007/s11661-019-05506-4. [47] 邹途祥. 纯铝的晶粒细化机制及动态力学性能的研究[D]. 太原: 太原理工大学, 2008: 63. [48] HEMKER K J. Understanding how nanocrystalline metals deform [J]. Science, 2004, 304(5668): 221–223. DOI: 10.1126/science.1097058. [49] SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. DOI: 10.1126/science.1086636. [50] YANG C F, PAN J H, LEE T H. Work-softening and anneal-hardening behaviors in fine-grained Zn-Al alloys [J]. Journal of Alloys and Compounds, 2009, 468(1–2): 230–236. DOI: 10.1016/j.jallcom.2008.01.067. [51] ZHANG W L, HE L J, LU Z G, et al. Microstructural characteristics and formation mechanism of adiabatic shear bands in Al-Zn-Mg-Cu alloy under dynamic shear loading [J]. Materials Science and Engineering: A, 2020, 791: 139430. DOI: 10.1016/j.msea.2020.139430. [52] KHAN M A, WANG Y W, YASIN G, et al. Adiabatic shear band localization in an Al-Zn-Mg-Cu alloy under high strain rate compression [J]. Journal of Materials Research and Technology, 2020, 9(3): 3977–3983. DOI: 10.1016/j.jmrt.2020.02.024. [53] NIE Y, CLAUS B, GAO J, et al. In situ observation of adiabatic shear band formation in aluminum alloys [J]. Experimental Mechanics, 2020, 60(2): 153–163. DOI: 10.1007/s11340-019-00544-w. [54] OWOLABI G M, ODESHI A G, SINGH M N K, et al. Dynamic shear band formation in aluminum 6061-T6 and aluminum 6061-T6/Al2O3 composites [J]. Materials Science and Engineering: A, 2007, 457(1-2): 114–119. DOI: 10.1016/j.msea.2006.12.034. [55] XIONG Y Y, LI N, JIANG H W, et al. Microstructural Evolutions of AA7055 aluminum alloy under dynamic and quasi-static compressions [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 272–278. DOI: 10.1007/s40195-014-0041-7. [56] 王礼立. 冲击载荷下的材料动态失稳和动态屈服 [J]. 力学学报, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249.WANG L L. The dynamic instability and dynamic yield of materials under impact loading [J]. Acta Mechanica Sinica, 1989, 21(S1): 142–147. DOI: 10.6052/0459-1879-1989-s1-1989-249. [57] 高玉魁. 冲击强化对304奥氏体不锈钢拉伸性能的影响 [J]. 材料工程, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007.GAO Y K. Influence of impact enhancements on tensile property of 304 austenite steel [J]. Journal of Materials Engineering, 2014(8): 36–40. DOI: 10.11868/j.issn.1001-4381.2014.08.007. [58] STARMAN B, HALLBERG H, WALLIN M, et al. Differences in phase transformation in laser peened and shot peened 304 austenitic steel [J]. International Journal of Mechanical Sciences, 2020, 176: 105535. DOI: 10.1016/j.ijmecsci.2020.105535. [59] LUO K Y, LU J Z, ZHANG Y K, et al. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel [J]. Materials Science and Engineering: A, 2011, 528(13–14): 4783–4788. DOI: 10.1016/j.msea.2011.03.041. [60] MIN N, LI W, JIN X J. α to γ transformation in the nanostructured surface layer of pearlitic steels near room temperature [J]. Scripta Materialia, 2008, 59(8): 806–809. DOI: 10.1016/j.scriptamat.2008.05.038. [61] CHEN S, MU J, WANG Y D, et al. Formation of omega phase induced by laser shock peening in Ti-17 alloy [J]. Materials Characterization, 2020, 159: 110017. DOI: 10.1016/j.matchar.2019.110017. [62] LU Y, ZHAO J B, QIAO H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Advances, 2019, 9(8): 085030. DOI: 10.1063/1.5082755. [63] HSU H C, LIN Y C, WANG S H, et al. Corrigendum to “Inducement of bainite and carbide transformation from retained austenite based on a high strain rate” [Scr. Mater. 62 (2010) 372–375] [J]. Scripta Materialia, 2010, 62(9): 726. DOI: 10.1016/j.scriptamat.2010.01.029. [64] 郎玉婧, 崔华, 蔡元华, 等. 应变诱导析出对7050合金连续热变形组织的影响 [J]. 中国有色金属学报, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004.LANG Y J, CUI H, CAI Y H, et al. Effect of strain-induced precipitation on subsequent hot deformed microstructure of 7050 alloy [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(10): 2726–2733. DOI: 10.19476/j.ysxb.1004.0609.2012.10.004. [65] WANG Y, LIN D L, LAW C C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures [J]. Journal of Materials Science Letters, 2000, 19(13): 1185–1188. DOI: 10.1023/A:1006723629430. [66] POUR-ALI S, KIANI-RASHID A R, BABAKHANI A, et al. Correlation between the surface coverage of severe shot peening and surface microstructural evolutions in AISI 321: a TEM, FE-SEM and GI-XRD study [J]. Surface and Coatings Technology, 2018, 334: 461–470. DOI: 10.1016/j.surfcoat.2017.11.062. [67] HUANG F, TAO N R. Effects of strain rate and deformation temperature on microstructures and hardness in plastically deformed pure aluminum [J]. Journal of Materials Science & Technology, 2011, 27(1): 1–7. DOI: 10.1016/S1005-0302(11)60017-0. [68] POUR-ALI S, KIANI-RASHID A R, BABAKHANI A. Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening [J]. Vacuum, 2017, 144: 152–159. DOI: 10.1016/j.vacuum.2017.07.016. [69] TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Materialia, 2002, 50(18): 4603–4616. DOI: 10.1016/S1359-6454(02)00310-5. [70] YANG Y, ZHOU K, ZHANG H, et al. Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy [J]. Journal of Alloys and Compounds, 2018, 767: 253–258. DOI: 10.1016/j.jallcom.2018.06.030. [71] LEE W S, CHEN T H. Rate-dependent deformation and dislocation substructure of Al-Sc alloy [J]. Scripta Materialia, 2006, 54(8): 1463–1468. DOI: 10.1016/j.scriptamat.2005.12.054. [72] 蔡大勇. GH169及GH696高温合金热加工工艺基础研究[D]. 秦皇岛: 燕山大学, 2003: 66−74. [73] YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening [J]. Acta Materialia, 2011, 59(3): 1014–1025. DOI: 10.1016/j.actamat.2010.10.032. [74] LIAO Y L, YE C, GAO H, et al. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: dislocation dynamic simulation and experiments [J]. Journal of Applied Physics, 2011, 110(2): 023518. DOI: 10.1063/1.3609072. [75] BASAVAKUMAR K G, MUKUNDA P G, CHAKRABORTY M. Influence of grain refinement and modification on microstructure and mechanical properties of Al-7Si and Al-7Si-2.5Cu cast alloys [J]. Materials Characterization, 2008, 59(3): 283–289. DOI: 10.1016/j.matchar.2007.01.011. [76] MYHR O R, HOPPERSTAD O S, BØRVIK T. A combined precipitation, yield stress, and work hardening model for Al-Mg-Si alloys incorporating the effects of strain rate and temperature [J]. Metallurgical and Materials Transactions A, 2018, 49(8): 3592–3609. DOI: 10.1007/s11661-018-4675-3. [77] 冯飞. 应变速率对GH4169合金拉伸变形行为的影响[D]. 沈阳: 东北大学, 2013: 55−57. [78] ZHANG P, WANG Y Q, XIE Y N, et al. A study on the dynamic shock performance of 7055-T6I4 aluminum alloy based on experimental and simulation [J]. Vacuum, 2018, 157: 306–311. DOI: 10.1016/j.vacuum.2018.08.042. [79] YANG Y, WANG H M, ZHOU K, et al. Effect of laser shock peening and annealing temperatures on stability of AA2195 alloy near-surface microstructure [J]. Optics & Laser Technology, 2019, 119: 105569. DOI: 10.1016/j.optlastec.2019.105569. [80] 张孜昭, 许晓嫦, 刘志义, 等. 应变速率对强变形Al-Cu合金中析出相低温回溶速度的影响 [J]. 热处理, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003.ZHANG Z Z, XU X C, LIU Z Y, et al. Effect of strain rate on redissolution rate of precipitated phase at low temperature in severely plastically deformed Al-Cu alloy [J]. Heat Treatment, 2010, 25(2): 15–18. DOI: 10.3969/j.issn.1008-1690.2010.02.003. [81] AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems [J]. Progress in Materials Science, 2019, 101: 1–45. DOI: 10.1016/j.pmatsci.2018.11.001. [82] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363. [83] LI Y S, ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation [J]. Acta Materialia, 2009, 57(3): 761–772. DOI: 10.1016/j.actamat.2008.10.021. [84] CHEN A Y, RUAN H H, WANG J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Materialia, 2011, 59(9): 3697–3709. DOI: 10.1016/j.actamat.2011.03.005. [85] ZHANG H W, HEI Z K, LIU G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003, 51(7): 1871–1881. DOI: 10.1016/S1359-6454(02)00594-3. [86] LAINÉ S J, KNOWLES K M, DOORBAR P J, et al. Microstructural characterisation of metallic shot peened and laser shock peened Ti-6Al-4V [J]. Acta Materialia, 2017, 123: 350–361. DOI: 10.1016/j.actamat.2016.10.044. [87] YMAKOV V, WOLF D, PHILLPOT S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nature Materials, 2002, 1(1): 45–49. DOI: 10.1038/nmat700. [88] LIAO X Z, ZHOU F, LAVERNIA E J, et al. Deformation twins in nanocrystalline Al [J]. Applied Physics Letters, 2003, 83(24): 5062–5064. DOI: 10.1063/1.1633975. [89] 卢磊, 尤泽升. 纳米孪晶金属塑性变形机制 [J]. 金属学报, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697.LU L, YOU Z S. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metallurgica Sinica, 2014, 50(2): 129–136. DOI: 10.3724/sp.j.1037.2013.00697. [90] LU K, LU L, SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349–352. DOI: 10.1126/science.1159610. [91] 马晓光. 层错能对面心立方金属冷拔微观组织及织构演化的影响[D]. 西安: 西北工业大学, 2018: 1−18. [92] LI X Y, WEI Y J, LU L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464(7290): 877–880. DOI: 10.1038/nature08929. [93] CHEN H, LI F G, LI J H, et al. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation [J]. Materials Science and Engineering: A, 2016, 671: 17–31. DOI: 10.1016/j.msea.2016.06.046. [94] WANG X, LI Y S, ZHANG Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. Journal of Materials Science & Technology, 2017, 33(7): 758–761. DOI: 10.1016/j.jmst.2016.11.006. [95] HASSANI-GANGARAJ S M, CHO K S, VOIGT H J L, et al. Experimental assessment and simulation of surface nanocrystallization by severe shot peening [J]. Acta Materialia, 2015, 97: 105–115. DOI: 10.1016/j.actamat.2015.06.054. [96] FANG T H, LI W L, TAO N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331(6024): 1587–1590. DOI: 10.1126/science.1200177. [97] LIU X C, ZHANG H W, LU K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342(6156): 337–340. DOI: 10.1126/science.1242578. [98] WANG C, WANG L, WANG C L, et al. Dislocation density-based study of grain refinement induced by laser shock peening [J]. Optics & Laser Technology, 2020, 121: 105827. DOI: 10.1016/j.optlastec.2019.105827. [99] ZHOU W F, REN X D, REN Y P, et al. Initial dislocation density effect on strain hardening in FCC aluminium alloy under laser shock peening [J]. Philosophical Magazine, 2017, 97(12): 917–929. DOI: 10.1080/14786435.2017.1285073. [100] WU X L, YANG M X, YUAN F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501–14505. DOI: 10.1073/pnas.1517193112. -