水下爆炸气泡射流载荷阵列测量技术探索

盛振新 刘建湖 张显丕 杲涛 陈江涛 杨静

盛振新, 刘建湖, 张显丕, 杲涛, 陈江涛, 杨静. 水下爆炸气泡射流载荷阵列测量技术探索[J]. 爆炸与冲击, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346
引用本文: 盛振新, 刘建湖, 张显丕, 杲涛, 陈江涛, 杨静. 水下爆炸气泡射流载荷阵列测量技术探索[J]. 爆炸与冲击, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346
SHENG Zhenxin, LIU Jianhu, ZHANG Xianpi, GAO Tao, CHEN Jiangtao, YANG Jing. On an array-sensor technology for measuring bubble jet load generated by underwater explosion[J]. Explosion And Shock Waves, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346
Citation: SHENG Zhenxin, LIU Jianhu, ZHANG Xianpi, GAO Tao, CHEN Jiangtao, YANG Jing. On an array-sensor technology for measuring bubble jet load generated by underwater explosion[J]. Explosion And Shock Waves, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346

水下爆炸气泡射流载荷阵列测量技术探索

doi: 10.11883/bzycj-2020-0346
详细信息
    作者简介:

    盛振新(1986- ),男,博士,高级工程师,killer860710@163.com

  • 中图分类号: O384; O358

On an array-sensor technology for measuring bubble jet load generated by underwater explosion

  • 摘要: 水下爆炸气泡射流载荷测量目前存在两个难点:(1)气泡射流载荷是非均匀的面载荷,但其作用半径仅为气泡最大半径的1/10,限于传感器尺寸及安装空间,敏感元密度较低,难以准确获取气泡射流载荷空间分布规律;(2)气泡射流载荷测量时传感器所处的力学环境非常复杂,传感器容易损坏,导致无法测得完整时程。因此现有测量手段难以获取气泡射流载荷的时空分布特性。鉴于此,设计了一种阵列传感器,在一张PVDF(聚偏氟乙烯)压电薄膜上采用特殊工艺加工多个小型敏感元,敏感元尺寸为5 mm×5 mm,呈8×8矩阵排列,敏感元密度≥1 cm−2,同时在揭示传感器损坏机理的基础上设计了传感器防护装置。在小型观测水槽内开展了小当量炸药水下爆炸试验,采用阵列传感器测量获取了气泡射流载荷的时空分布特性。研究结果表明:(1)设计的防护装置可保证传感器在气泡射流载荷测量过程中不损坏;(2)气泡射流载荷中心最大,向四周逐渐减小,中心处气泡射流载荷峰压约35.6 MPa,约为冲击波峰压的1.16倍。建立的阵列测量技术可为水下爆炸气泡射流的深入研究提供技术支撑。
  • 图  1  点阵式敏感元分布形式

    Figure  1.  Distribution of sensitive elements

    图  2  阵列传感器

    Figure  2.  An array sensor

    图  3  单点式PVDF传感器测量气泡射流载荷时的损坏情况

    Figure  3.  Damage of a single PVDF sensor used to measure bubble jet load

    图  4  阵列传感器的防护装置

    Figure  4.  The protection device of the array sensor

    图  5  气泡射流测量试验布置

    Figure  5.  Experimental arrangement of bubble jet load measurement

    图  6  试验后薄膜损坏情况

    Figure  6.  Damage of protection films after tests

    图  7  测量系统连接示意图

    Figure  7.  Diagram of measuring system

    图  8  工况5气泡射流演化过程

    Figure  8.  Evolution process of bubble jet in case 5

    图  9  工况5气泡射流载荷测量结果

    Figure  9.  Measurement results of bubble jet load in case 5

    图  10  气泡射流载荷峰压分布规律

    Figure  10.  Peak pressure distribution of bubble jet load

    表  1  防护装置薄膜试验工况及试验后薄膜损伤情况

    Table  1.   Test events of protection device and damage results of protection films after tests

    工况药量距径比薄膜材料及厚度试验后薄膜状态
    1雷管0.82.0 mm TPU破口
    2雷管0.82.0 mm硅胶花瓣撕裂成6片
    3雷管0.81.0 mm PET沿压板环向切割
    4雷管0.81.0 mm PET+0.5 mm TPUPET破碎,TPU破
    5雷管0.81.0 mm PET+2.0 mm TPUPET和TPU均不破
    下载: 导出CSV

    表  2  气泡射流载荷峰压分布

    Table  2.   Peak pressure distribution of bubble jet load

    敏感元通道距传感器中心距离/mm峰压/MPa
    Ch1−39.5914.5
    Ch2−28.2820.8
    Ch3−16.9723.3
    Ch4 −5.6630.5
    Ch5 5.6635.6
    Ch6 16.9735.6
    Ch8 39.5919.9
    下载: 导出CSV

    表  3  气泡射流载荷计算结果与试验结果的对比

    Table  3.   Comparison between calculated results and test results of bubble jet load

    压力/MPa压力偏差/%持续时间/ms持续时间偏差/%
    计算值试验值计算值试验值
    33.035.6−7.31.061.18−10.2
    下载: 导出CSV
  • [1] 李健, 潘力, 林贤坤, 等. 近自由面水下爆炸气泡与结构相互作用数值计算研究 [J]. 振动与冲击, 2015, 34(18): 13–18. DOI: 10.13465/j.cnki.jvs.2015.18.003.

    LI J, PAN L, LIN X K, et al. Numerical study on interaction between bubble and structure near free surface in underwater explosion [J]. Journal of Vibration and Shock, 2015, 34(18): 13–18. DOI: 10.13465/j.cnki.jvs.2015.18.003.
    [2] 朱枫. 水下爆炸气泡脉动与近边界射流特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 2−12.

    ZHU F. Research on characteristics of bubble pulsation and jetting near boundary induced by underwater explosion [D]. Harbin: Harbin Engineering University, 2011: 2−12.
    [3] 崔杰. 近场水下爆炸气泡载荷及对结构毁伤试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 2−17.

    CUI J. Experimental study on underwater explosion bubble loads and damage on the structure nearby [D]. Harbin: Harbin Engineering University, 2013: 2−17.
    [4] 黄超. 柱形装药气泡动态特性及射流冲击毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 2−21.

    HUANG C. Research on dynamics of cylindrical charge underwater explosion bubble and damage of jet impact [D]. Harbin: Harbin Engineering University, 2011: 2−21.
    [5] 李健, 林贤坤, 荣吉利, 等. 近壁面水下爆炸气泡运动的数值计算研究 [J]. 振动与冲击, 2014, 33(15): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035.

    LI J, LIN X K, RONG J L, et al. Dynamic behavior of a bubble near a rigid wall in underwater explosion [J]. Journal of Vibration and Shock, 2014, 33(15): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035.
    [6] 崔杰, 张阿漫, 郭君, 等. 舱段结构在气泡射流作用下的毁伤效果 [J]. 爆炸与冲击, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.

    CUI J, ZHANG A M, GUO J, et al. Damage effect of cabin structure subjected to bubble jet [J]. Explosion and Shock Waves, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.
    [7] 汪斌, 张远平, 王彦平. 水中爆炸气泡与水底边界相互作用的水射流现象 [J]. 爆炸与冲击, 2011, 31(3): 250–255. DOI: 10.11883/1001-1455(2011)03-0250-06.

    WANG B, ZHANG Y P, WANG Y P. Water jet phenomena induced by the interaction between underwater explosion bubbles and water bottom boundaries [J]. Explosion and Shock Waves, 2011, 31(3): 250–255. DOI: 10.11883/1001-1455(2011)03-0250-06.
    [8] 黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.

    HUANG C, WANG B, ZHANG Y P, et al. Behaviors of bubble jets induced by underwater explosion of cylindrical charges under free-field conditions [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.
    [9] TOMITA Y, SHIMA A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse [J]. Journal of Fluid Mechanics, 1986, 169: 535–564. DOI: 10.1017/S0022112086000745.
    [10] TONG R P, SCHIFFERS W P, SHAW S J, et al. The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary [J]. Journal of Fluid Mechanics, 1999, 380: 339–361. DOI: 10.1017/S0022112098003589.
    [11] SCHIFFERS W P, SHAW S J, EMMONY D C. Acoustical and optical tracking of the collapse of a laser-generated cavitation bubble near a solid boundary [J]. Ultrasonics, 1998, 36(1−5): 559–563. DOI: 10.1016/S0041-624X(97)00110-8.
    [12] WANG Y C, CHEN Y W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary [J]. Experimental Thermal and Fluid Science, 2007, 32(2): 403–414. DOI: 10.1016/j.expthermflusci.2007.05.003.
    [13] JAYAPRAKASH A, HSIAO C T, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver: ASME, 2010.
    [14] JAYAPRAKASH A, HSIAO C T, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [J]. Journal of Fluids Engineering, 2012, 134(3): 031301. DOI: 10.1115/1.4005688.
    [15] 牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡射流现象的试验研究 [J]. 哈尔滨工程大学学报, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.

    MU J L, ZHU X, HUANG X M, et al. Experimental study of jets formed by bubbles from underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.
    [16] 范志强. PVDF压力测量特性与水下爆炸近场多孔金属夹芯板动力响应的研究 [D]. 合肥: 中国科学技术大学, 2015: 55−73.

    FAN Z Q. Characteristics of pressure measurements using PVDF gauge and the dynamic response of metallic sandwich panels subjected to proximity underwater explosion [D]. Hefei: University of Science and Technology of China, 2015: 55−73.
    [17] LUO J, XU W J, DENG J, et al. Experimental study on the impact characteristics of cavitation bubble collapse on a wall [J]. Water, 2018, 10(9): 1262. DOI: 10.3390/w10091262.
    [18] 王海坤, 刘建湖, 毛海斌, 等. 水下爆炸气泡及其射流的光电联合测量研究 [J]. 防护工程, 2015, 37(4): 36–42.

    WANG H K, LIU J H, MAO H B, et al. Photoelectric combined measurements of underwater explosion bubble and jet [J]. Protective Engineering, 2015, 37(4): 36–42.
    [19] 陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 49−79.

    CHEN Y Y. Experimental study on wall pressure and damage of defferent structures to near-field underwater explosion [D]. Harbin: Harbin Engineering University, 2019: 49−79.
    [20] YU K H, KWON T G, YUN M J, et al. Distributed flexible tactile sensor using piezoelectric film [C] // Proceedings of the 15th Triennial World Congress. Barcelona: IFAC, 2002.
    [21] 杨敏, 陈洪, 李明海. 柔性阵列式压力传感器的发展现状简介 [J]. 航天器环境工程, 2009, 26(S1): 112–115. DOI: 10.3969/j.issn.1673-1379.2009.z1.029.

    YANG M, CHEN H, LI M H. Brief introduction to the development of flexible array pressure sensor [J]. Spacecraft Environment Engineering, 2009, 26(S1): 112–115. DOI: 10.3969/j.issn.1673-1379.2009.z1.029.
    [22] LEE Y C, YU J M, HUANG S W. Fabrication and characterization of a PVDF hydrophone array transducer [J]. Key Engineering Material, 2004, 270−273: 1406–1413. DOI: 10.4028/www.scientific.net/KEM.270-273.1406.
    [23] WANG Y C, HUANG C H, LEE Y C, et al. Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse [J]. Experiments in Fluids, 2006, 41(3): 365–373. DOI: 10.1007/s00348-006-0135-8.
    [24] 舒方法, 姜寿山, 张欣, 等. PVDF压电薄膜在足底压力测量中的应用 [J]. 压电与声光, 2008, 30(4): 514–516. DOI: 10.3969/j.issn.1004-2474.2008.04.041.

    SHU F F, JIANG S S, ZHANG X, et al. Application of PVDF piezoelectric-film to foot-pressure measurement [J]. Piezoelectrics & Acoustooptics, 2008, 30(4): 514–516. DOI: 10.3969/j.issn.1004-2474.2008.04.041.
    [25] 卢凯, 黄文, 刘思祎, 等. 基于PVDF的柔性压力传感器阵列的制备及仿真研究 [J]. 电子元件与材料, 2016, 35(3): 40–43. DOI: 10.14106/j.cnki.1001-2028.2016.03.010.

    LU K, HUANG W, LIU S Y, et al. Preparation and simulation for flexible pressure sensor array based on poly (vinylidene fluoride) film [J]. Electronic Components and Materials, 2016, 35(3): 40–43. DOI: 10.14106/j.cnki.1001-2028.2016.03.010.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  624
  • HTML全文浏览量:  280
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回