铝粉尘爆轰的反应模型

岳军政 洪滔 吴先前 黄晨光

岳军政, 洪滔, 吴先前, 黄晨光. 铝粉尘爆轰的反应模型[J]. 爆炸与冲击, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349
引用本文: 岳军政, 洪滔, 吴先前, 黄晨光. 铝粉尘爆轰的反应模型[J]. 爆炸与冲击, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349
YUE Junzheng, HONG Tao, WU Xianqian, HUANG Chenguang. A modified reaction model of aluminum dust detonation[J]. Explosion And Shock Waves, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349
Citation: YUE Junzheng, HONG Tao, WU Xianqian, HUANG Chenguang. A modified reaction model of aluminum dust detonation[J]. Explosion And Shock Waves, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349

铝粉尘爆轰的反应模型

doi: 10.11883/bzycj-2020-0349
详细信息
    作者简介:

    岳军政(1988- ),男,博士,助理研究员,yuejz@imech.ac.cn

    通讯作者:

    吴先前(1982- ),男,博士,副研究员,wuxianqian@imech.ac.cn

  • 中图分类号: O381

A modified reaction model of aluminum dust detonation

  • 摘要: 铝粉反应模型是对悬浮铝粉尘气-固两相爆轰进行数值模拟研究的关键。通过考虑铝粉燃烧产物氧化铝(Al2O3)在高温下的分解吸热反应,改进了铝粉的扩散燃烧模型。将该模型嵌入到三维的气-固两相爆轰数值计算程序中,分别对铝粉/空气混合物以及铝粉/氧气混合物的爆轰进行了数值模拟,计算得到的稳定爆轰波速度与实验结果、文献值均吻合较好,误差小于5.5%,表明改进的铝粉反应模型适用于不同氧化气体氛围中铝粉尘爆轰的模拟计算。此外,对两相爆轰参数及爆轰流场的物理量分布进行分析,获得了铝粉反应模型对爆轰波结构的影响规律。
  • 图  1  数值模拟得到的密度和压力分布与理论计算结果[20]的比较

    Figure  1.  Distributions of density and pressure by simulation and theory[20]

    图  2  计算域横截面和局部区域初始压力云图

    Figure  2.  Transverse cross section of the computational domain and initial pressure contour of partial domain

    图  3  爆轰管轴线不同位置处压力历史

    Figure  3.  Pressure histories at different locations on the tube axis

    图  4  3.83 ms时刻铝粉/空气爆轰波阵面附近气体压力、气体温度、气体密度、气体轴向速度、铝粉体积分数以及铝粉轴向速度的分布

    Figure  4.  Distributions of gas pressure, gas temperature, gas density, gas velocity in the x direction, volume fraction of Al particles, and Al particles velocity in the x direction around the detonation wave for Al/air mixtures at t=3.83 ms

    图  5  3.83 ms时刻爆轰管轴上两相的轴向速度、气体温度以及氮气、氧气和铝粉的质量浓度分布

    Figure  5.  Longitudinal distributions of two phases velocities in the x direction, gas temperature, mass concentrations of nitrogen, oxygen and Al particles along the tube axis at t=3.83 ms

    图  6  模型改进前后计算得到的爆轰波附近气体温度和气体压力的分布

    Figure  6.  Distributions of gas temperature and gas pressure around the steady detonation wave calculated by the improved and previous models

    图  7  4.43 ms时刻铝粉/氧气爆轰波阵面附近气体压力、气体温度、气体密度、气体轴向速度、铝粉体积分数以及铝粉轴向速度的分布

    Figure  7.  Distributions of gas pressure, gas temperature, gas density, gas velocity in the x direction as well as volume fraction of Al particles, and Al particles velocity in the x direction around the detonation wave for Al/O2 mixtures at t=4.43 ms

    图  8  4.43 ms时刻爆轰管轴上两相的轴向速度、气体温度以及铝粉、氧气的质量浓度分布

    Figure  8.  Longitudinal distributions of two phase velocities in the x direction, gas temperature, mass concentrations of oxygen and Al particles along the tube axis at t=4.43 ms

  • [1] LIU X L, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. DOI: 10.1016/j.jhazmat.2015.07.068.
    [2] VEYSSIERE B, KHASAINOV B A, BRIAND A. Investigation of detonation initiation in aluminium suspensions [J]. Shock Waves, 2008, 18(4): 307–315. DOI: 10.1007/s00193-008-0136-z.
    [3] FEDOROV A V, KHMEL T A. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen [J]. Combustion, Explosion, and Shock Waves, 2005, 41(4): 435–448. DOI: 10.1007/s10573-005-0054-7.
    [4] BECKSTEAD M W. Correlating aluminum burning times [J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533–546. DOI: 10.1007/s10573-005-0067-2.
    [5] TANGUAY V, GOROSHIN S, HIGGINS A J, et al. Aluminum particle combustion in high-speed detonation products [J]. Combustion Science and Technology, 2009, 181(4): 670–693. DOI: 10.1080/00102200802643430.
    [6] BAZYN T, KRIER H, GLUMAC N. Evidence for the transition from the diffusion-limit in aluminum particle combustion [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2021–2028. DOI: 10.1016/j.proci.2006.07.161.
    [7] GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion [J]. Combustion and Flame, 2016, 168: 378–392. DOI: 10.1016/j.combustflame.2016.01.022.
    [8] ZHANG F, GERRARD K, RIPLEY R C. Reaction mechanism of aluminum-particle-air detonation [J]. Journal of Propulsion and Power, 2009, 25(4): 845–858. DOI: 10.2514/1.41707.
    [9] BRIAND A, VEYSSIERE B, KHASAINOV B A. Modelling of detonation cellular structure in aluminium suspensions [J]. Shock Waves, 2010, 20(6): 521–529. DOI: 10.1007/s00193-010-0288-5.
    [10] BALAKRISHNAN K. Diffusion- and kinetics-limited combustion of an explosively dispersed aluminum particle [J]. Journal of Propulsion and Power, 2014, 30(2): 522–526. DOI: 10.2514/1.B35059.
    [11] KWON Y S, GROMOV A A, ILYIN A P, et al. The mechanism of combustion of superfine aluminum powders [J]. Combustion and Flame, 2003, 133(4): 385–391. DOI: 10.1016/S0010-2180(03)00024-5.
    [12] NIGMATULIN R I. Methods used in mechanics of continuous media for a description of multiphase mixtures [J]. Journal of Applied Mathematics and Mechanics, 1970, 34(6): 1097–1112. DOI: 10.1016/0021-8928(70)90174-7.
    [13] HAYNES W M. Handbook of chemistry and physics [M]. Florida: CRC Press, 2014.
    [14] LEVITAS V I, PANTOYA M L, CHAUHAN G, et al. Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14088–14096. DOI: 10.1021/jp902317m.
    [15] 洪滔, 秦承森. 铝颗粒激波点火机制初探 [J]. 爆炸与冲击, 2003, 23(4): 295–299.

    HONG T, QIN C S. Mechanism of shock wave ignition of aluminum particle [J]. Explosion and Shock Waves, 2003, 23(4): 295–299.
    [16] PRICE E W. Combustion of metalized propellants [M]// KUO K K. Fundamentals of Solid-Propellant Combustion. New York: American Institute of Aeronautics and Astronautics, 1984: 479−513. DOI: 10.2514/5.9781600865671.0479.0513.
    [17] STEINBERG T A, WILSON D B, BENZ F. The combustion phase of burning metals [J]. Combustion and Flame, 1992, 91(2): 200–208. DOI: 10.1016/0010-2180(92)90100-4.
    [18] GLASSMAN I. Combustion of metals revisited thermodynamically [C]// Proceedings of the Eastern States Section of the Combustion Institute. Princeton: The Combustion Institute, 1993: 17−26.
    [19] 沈维道, 童钧耕. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2007.

    SHEN W D, TONG J G. Engineering thermodynamics [M]. 4th ed. Beijing: Higher Education Press, 2007.
    [20] TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin Heidelberg: Springer, 2009. DOI: 10.1007/b79761.
    [21] TULIS A J, SELMAN J R. Detonation tube studies of aluminum particles dispersed in air [J]. Symposium (International) on Combustion, 1982, 19(1): 655–663. DOI: 10.1016/s0082-0784(82)80240-3.
    [22] LIU L J, ZHANG Q, SHEN S L, et al. Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations [J]. Fuel, 2016, 169: 41–49. DOI: 10.1016/j.fuel.2015.11.090.
    [23] BENKIEWICZ K, HAYASHI K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement [J]. Shock Waves, 2003, 12(5): 385–402. DOI: 10.1007/s00193-002-0169-7.
  • 加载中
图(8)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  436
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-23
  • 修回日期:  2020-11-24
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回