Shock initiation characteristics of four-component HTPB solid propellant containing RDX
-
摘要: 为了研究含RDX四组元HTPB固体推进剂的冲击起爆行为和在低温条件下的适应性,在常温和低温条件下,对该固体推进剂进行了冲击加载拉氏分析实验。采用锰铜压力计测量了推进剂中不同位置处的压力变化历程,采用电离探针测量了固体推进剂的爆速。分析了固体推进剂的爆轰成长规律,获得了推进剂的临界起爆压力、爆速、爆压和爆轰成长距离等爆轰特征参量。通过对比不同条件下的特征参量发现,低温对固体推进剂的冲击起爆特性影响较小。此外,还对固体推进剂的冲击起爆过程进行了数值模拟,标定了固体推进剂点火增长模型的反应速率方程参数和推进剂的未反应JWL状态方程参数。Abstract: In order to investigate the characters of the four-component HTPB solid propellant containing RDX initiated by shock waves and evaluate its adaptability to low temperature, Lagrange analytical experiments were carried out in normal and low temperature conditions. In the Lagrange analytical experiments, sensors were embedded in different locations of the material, and the dynamic mechanical behavior of the material was obtained by analyzing the variation of some mechanical parameters (such as stress or pressure, particle velocity, strain or specific volume and temperature) measured by the sensors. Since the thickness of gap affected the initiation pressure, the manganese-copper sensors were used to measure the pressure changes in different positions of the propellant with the gap thicknesses of 40, 45 and 50 mm, respectively. When the gap thickness was 40 mm, the propellant detonated. In contrast, the propellant burned for the gap thicknesses of 45 and 50 mm. The ionization probes were used to collect the detonation velocity of the propellant. In normal temperature conditions, the detonation velocities with the gap thicknesses of 10 and 40 mm were measured. In low temperature conditions, the detonation velocities with the gap thicknesses of 10, 30 and 40 mm were measured. The growth laws of the detonation were analyzed, and the parameters such as detonation pressure, detonation velocity and detonation distance of the solid propellant were obtained. Numerical simulation was carried out to calculate the shock initiation process of the propellant, and the parameters of the ignition and growth model and the JWL state equation of the nonreactive propellant were determined by fitting the experimental data. The results show that the detonation pressure of the solid propellant is about 12.5 GPa, the critical initiation pressure is 5.16−5.61 GPa, the detonation distance is about 13.3 mm, and the detonation velocity is 5.719−6.013 km/s. The research results indicate that the low temperature has little effect on the shock initiation characteristics of the solid propellant.
-
表 1 不同实验条件下的冲击起爆实验结果
Table 1. Experimental results of shock initiation under different experimental conditions
实验序号 铝隔板厚度/mm 实验条件 见证板破坏情况 反应情况 药物残渣 1 10 常温 穿孔 起爆 无 2 10 常温 穿孔 起爆 无 3 10 常温 穿孔 起爆 无 4 10 −60 ℃冷冻5 h 穿孔 起爆 无 5 30 −60 ℃冷冻9 h 21 min 穿孔 起爆 无 6 50 −60 ℃冷冻4 h 25 min 无损伤 燃烧不完全 有 7 40 −60 ℃冷冻9 h 35 min 穿孔 起爆 无 8 40 常温 穿孔 起爆 无 9 40 −60 ℃冷冻6 h 25 min 穿孔 起爆 无 10 50 常温 无损伤 燃烧 无 11 45 常温 有轻微损伤 燃烧 无 12 40 常温 凹坑 起爆 无 13 40 常温 穿孔 起爆 无 14 50 常温 有轻微损伤 燃烧不完全 有 15 45 −60 ℃冷冻5 h 无损伤 燃烧不完全 有 16 40 常温 穿孔 起爆 无 17 40 常温 穿孔 起爆 无 18 50 常温 无损伤 燃烧不完全 有 19 40 −60 ℃冷冻12 h 穿孔 起爆 无 20 40 常温 穿孔 起爆 无 表 2 不同实验条件下固体推进剂爆速的测量结果
Table 2. Experimental results of detonation velocity of the solid propellant under different conditions
实验编号 铝隔板厚度/mm 实验条件 爆速/(km·s−1) 3 10 常温 5.719 4 10 −60 ℃冷冻5 h 5.854 5 30 −60 ℃冷冻9 h 21 min 6.013 6 50 −60 ℃冷冻4 h 25 min 7 40 −60 ℃冷冻9 h 35 min 5.769 8 40 常温 5.749 表 3 波阵面压力峰值的实验值与计算值的比较
Table 3. Comparison of experimental and calculated wave front pressure peaks
固体推进剂中位置/mm 波阵面压力值/GPa 误差/% 实验 计算 0.0 6.16 5.78 6.17 2.0 7.18 7.73 −7.67 3.4 8.11 8.94 −10.23 4.9 9.79 10.47 −6.95 8.3 10.13 9.95 1.78 9.4 11.03 11.55 −4.71 13.3 11.86 12.46 −5.06 18.3 12.08 12.79 −5.88 60.0 13.10 12.82 2.14 78.0 12.81 12.79 0.16 87.8 13.06 12.81 1.91 表 4 固体推进剂的点火增长反应速率方程参数
Table 4. Fitted parameters of reaction rate equation for ignition growth of solid propellant
I/µs−1 b a x G1/(GPa−2·μs−1) c d y G2/(GPa−1.2·μs−1) e g z 100 0.667 0.0 3.0 80 0.667 1.0 2.0 883.3 0.75 0.27 1.2 -
[1] 王晓峰, 王亲会, 王宁飞. 开展高能固体推进剂危险性分级研究的建议 [J]. 火炸药学报, 2003, 26(1): 59–61. DOI: 10.3969/j.issn.1007-7812.2003.01.018.WANG X F, WANG Q H, WANG N F. Suggestion on studying hazard classification of high energy solid propellants [J]. Chinese Journal of Explosives and Propellants, 2003, 26(1): 59–61. DOI: 10.3969/j.issn.1007-7812.2003.01.018. [2] 廖林泉, 胥会祥, 李勇宏, 等. HTPB推进剂危险性实验研究 [J]. 火炸药学报, 2010, 33(4): 28–31, 43. DOI: 10.3969/j.issn.1007-7812.2010.04.007.LIAO L Q, XU H X, LI Y H, et al. Experimental study on hazard of HTPB propellants [J]. Chinese Journal of Explosives and Propellants, 2010, 33(4): 28–31, 43. DOI: 10.3969/j.issn.1007-7812.2010.04.007. [3] 常新龙, 龙兵, 胡宽, 等. HTPB推进剂低温裂纹扩展特性试验研究 [J]. 固体火箭技术, 2015, 38(1): 86–89, 106. DOI: 10.7673/j.issn.1006-2793.2015.01.016.CHANG X L, LONG B, HU K, et al. Experimental study on low temperature crack growth behavior of HTPB propellant [J]. Journal of Solid Rocket Technology, 2015, 38(1): 86–89, 106. DOI: 10.7673/j.issn.1006-2793.2015.01.016. [4] TARVER C M, FRIED L E, RUGGIERO A J, et al. Energy transfer in solid explosives: UCRL-JC-111343 [R]. Washington: USDOE, 1993. [5] VORTHMAN J E. Facilities for the study of shock induced decomposition of high explosives [J]. AIP Conference Proceedings, 1982, 78(1): 680–684. DOI: 10.1063/1.33249. [6] URTIEW P A, ERICKSON L M, ALDIS D F, et al. Shock initiation of LX-17 as a function of its initial temperature [C]// Proceedings of the Ninth Symposium (International) on Detonation. Portland: OCNR, 1989. [7] AVERIN A N, ALEKSEEV A V, BATALOV S V, et al. Investigation into low-temperatures influence on high explosive compounds sensitivity to shock-wave impacts [J]. AIP Conference Proceedings, 1996, 370(1): 847–850. DOI: 10.1063/1.50838. [8] 池家春, 刘雨生, 龚晏清, 等. JB9014炸药在常温和−54 ℃低温下冲击引爆压力场发展的实验研究 [J]. 高压物理学报, 2001, 15(1): 39–47. DOI: 10.11858/gywlxb.2001.01.006.CHI J C, LIU Y S, GONG Y Q, et al. Investigation of shock pressure evolution of initiation in IHE’s JB9014 at ambient and −54 ℃ [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 39–47. DOI: 10.11858/gywlxb.2001.01.006. [9] 伍俊英, 陈朗, 鲁建英, 等. 高能固体推进剂冲击起爆特征研究 [J]. 兵工学报, 2008, 29(11): 1315–1319. DOI: 10.3321/j.issn:1000-1093.2008.11.007.WU J Y, CHEN L, LU J Y, et al. Research on shock initiation of the high energy solid propellants [J]. Acta Armamentarii, 2008, 29(11): 1315–1319. DOI: 10.3321/j.issn:1000-1093.2008.11.007. [10] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to −55 ℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599. [11] CHEN L, PI Z D, LIU D Y, et al. Shock initiation of the CL-20-based explosive C-1 measured with embedded electromagnetic particle velocity gauges [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1060–1069. DOI: 10.1002/prep.201600048. [12] 刘丹阳, 陈朗, 杨坤, 等. CL-20基炸药爆轰产物JWL状态方程实验标定方法研究 [J]. 兵工学报, 2016, 37(S1): 141–145.LIU D Y, CHEN L, YANG K, et al. Calibration method of parameters in JWL equation of state for detonation products of CL-20-based explosives [J]. Acta Armamentarii, 2016, 37(S1): 141–145. [13] PI Z D, CHEN L, WU J Y. Temperature-dependent shock initiation of CL-20-based high explosives [J]. Central European Journal of Energetic Materials, 2017, 14(2): 361–374. DOI: 10.22211/cejem/68392. [14] 裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives and Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015. [15] 黄韵, 王旭, 徐森, 等. HMX基推进剂临界起爆压力的研究 [J]. 爆破器材, 2020, 49(1): 34–39. DOI: 10.3969/j.issn.1001-8352.2020.01.007.HUANG Y, WANG X, XU S, et al. Study on critical initiation pressure of HMX-base propellant [J]. Explosive Materials, 2020, 49(1): 34–39. DOI: 10.3969/j.issn.1001-8352.2020.01.007. [16] 孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995. [17] 章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991.