• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

孔内起爆位置对爆破振动场分布的影响作用规律

高启栋 靳军 王亚琼 卢文波 冷振东 陈明

程扬帆, 马宏昊, 沈兆武. MgH2对乳化炸药的压力减敏影响实验[J]. 爆炸与冲击, 2014, 34(4): 427-432. doi: 10.11883/1001-1455(2014)04-0427-06
引用本文: 高启栋, 靳军, 王亚琼, 卢文波, 冷振东, 陈明. 孔内起爆位置对爆破振动场分布的影响作用规律[J]. 爆炸与冲击, 2021, 41(10): 105201. doi: 10.11883/bzycj-2020-0352
Cheng Yang-fan, Ma Hong-hao, Shen Zhao-wu. Experimental research on pressure desensitization of emulsion explosive sensitized by MgH2[J]. Explosion And Shock Waves, 2014, 34(4): 427-432. doi: 10.11883/1001-1455(2014)04-0427-06
Citation: GAO Qidong, JIN Jun, WANG Yaqiong, LU Wenbo, LENG Zhendong, CHEN Ming. Acting law of in-hole initiation position on distribution of blast vibration field[J]. Explosion And Shock Waves, 2021, 41(10): 105201. doi: 10.11883/bzycj-2020-0352

孔内起爆位置对爆破振动场分布的影响作用规律

doi: 10.11883/bzycj-2020-0352
基金项目: 国家自然科学基金(52009003,51809016);中央高校基本科研业务费专项基金(300102210123);水工岩石力学教育部重点实验室开放研究基金(EMHSE1903)
详细信息
    作者简介:

    高启栋(1991- ),男,博士,讲师,qdgao@chd.edu.cn

    通讯作者:

    王亚琼(1975- ),男,博士,教授,ys08@gl.chd.edu.cn

  • 中图分类号: O382.2

Acting law of in-hole initiation position on distribution of blast vibration field

  • 摘要: 岩石钻孔爆破中,孔内起爆位置决定炸药爆轰波的传播方向,进而影响爆破振动场的分布。通过分析柱状药包爆轰产物和爆炸能量的分配及其爆炸应力场的分布,揭示了起爆位置的影响作用机理;基于Heelan短柱解延长药包叠加计算模型,比较分析了不同起爆位置下爆破振动场的分布规律,并结合现场实验,验证了起爆位置对爆破振动场分布的调节作用效果。结果表明:起爆位置的影响作用机理在于柱状药包爆炸能量的轴向不均匀分配和爆破振动场叠加的相位延迟效应;孔内起爆位置对爆破振动场的分布起调节作用,爆破振动沿爆轰波传播正向叠加增强,且爆破振动场分布的不均匀性受药包长度和炸药爆轰速度的调控;对于常见的几种起爆方式,现场实验统计结果显示,底部起爆时地表爆破振动峰值最大,中部起爆次之,上部起爆最小,且爆破振动差异性随炮孔深度的增加而增大,但振动差异会随距离逐渐消减。
  • 图  1  柱状药包爆轰产物的一维流动模型

    Figure  1.  One-dimensional flow model of the detonation products of an cylindrical charge

    图  2  柱状药包的相位延迟效应

    Figure  2.  The phase delay effects of the cylindrical charge

    图  3  延长药包爆破振动场的计算模型

    Figure  3.  Computation model of the blast vibration field of the extended charge

    图  4  短柱药包的辐射模式

    Figure  4.  Radiation pattern of the short explosive column

    图  5  基于叠加计算模型的典型爆破振动速度曲线

    Figure  5.  Typical blast vibration velocity curves based on the superposition model

    图  6  药包轴向的测点布置

    Figure  6.  The observation points along the vertical direction of the cylindrical charge

    图  7  质点峰值振速随比例距离的变化

    Figure  7.  Peak particle velocities of the cylindrical charge varying with scaled distances

    图  8  沿轴向分布测点的质点峰值振速及差异率

    Figure  8.  Peak particle velocities of measuring points along vertical direction and their difference ratios

    图  9  药包径向的测点布置

    Figure  9.  The observation points along the radial direction of the cylindrical charge

    图  10  质点峰值振速随比例距离的变化

    Figure  10.  Peak particle velocities of the cylindrical charge varying with scaled distances

    图  11  沿径向分布测点的质点峰值振速及差异率

    Figure  11.  Peak particle velocities of measuring points along radial direction and their difference ratios

    图  12  装药参数对质点峰值振速差异率的影响

    Figure  12.  Influences of explosive parameters on difference ratios of peak particle velocities

    图  13  炮孔和振动测点的布置

    Figure  13.  Layout of blast holes and vibration monitoring points

    图  14  装药结构

    Figure  14.  Charging structures

    图  15  典型的爆破振动速度曲线

    Figure  15.  Typical blast vibration velocity curves

    图  16  质点峰值振速随比例距离的变化及其拟合曲线

    Figure  16.  Peak particle velocities varying with scaled distances and their fitting curves

    图  17  质点峰值振速差异率随比例距离的变化及其拟合曲线

    Figure  17.  Difference ratios of peak particle velocities varying with scaled distances and their fitting curves

    图  18  炮孔和振动测点的布置

    Figure  18.  Layout of blastholes and vibration monitoring points

    图  19  装药结构

    Figure  19.  Charging structures

    图  20  单孔S1和S2的典型爆破振动速度曲线

    Figure  20.  Typical blast vibration velocity curves in single blastholes S1 and S2

    图  21  单孔S1和S2的质点峰值振速随比例距离的变化及其拟合曲线

    Figure  21.  Peak particle velocities varying with scaled distances and their fitting curves in single blastholes S1 and S2

    图  22  单孔S1和S2的质点峰值振速差异率随比例距离的变化及其拟合曲线

    Figure  22.  Difference ratios of peak particle velocities varying with scaled distances and their fitting curves in single blastholes S1 and S2

    表  1  钻孔爆破参数

    Table  1.   Drilling and blasting parameters

    对比组炮孔起爆方式孔径/mm孔深/m药径/mm装药量/kg装药长度/m堵塞段长度/m
    1两端起爆768.05012.06.02.0
    底部起爆
    2中点起爆766.050 8.44.02.0
    底部起爆
    3中点起爆764.550 5.42.71.8
    底部起爆
    下载: 导出CSV

    表  2  钻孔爆破参数

    Table  2.   Drilling and blasting parameters

    炮孔炮孔直径/mm炮孔深度/m孔距/m药包直径/mm装药量/kg堵塞段长度/m
    主爆孔1159.3~14.95.0~6.09048~844.5~5.5
    单孔S1/S211515.090725.0
    下载: 导出CSV
  • [1] 冷振东, 卢文波, 范勇, 等. 侧向起爆条件下的爆炸能量分布及其对破岩效果的影响 [J]. 爆炸与冲击, 2007, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.

    LENG Z D, LU W B, FAN Y, et al. Explosion energy distribution by side initiation and its effects on rock fragmentation [J]. Explosion and Shock Waves, 2007, 37(4): 661–669. DOI: 10.11883/1001-1455(2017)04-0661-09.
    [2] 李鹏毅, 王仲琦, 徐谦, 等. 有限长柱形药包土中爆腔特征尺寸的计算方法 [J]. 爆炸与冲击, 2019, 39(12): 124201. DOI: 10.11883/bzycj-2018-0416.

    LI P Y, WANG Z Q, XU Q, et al. Calculation methods for characteristic sizes of blasting cavities induced by finite-length cylindrical charges in soil [J]. Explosion and Shock Waves, 2019, 39(12): 124201. DOI: 10.11883/bzycj-2018-0416.
    [3] 刘亮, 郑炳旭, 陈明, 等. 起爆方式对台阶爆破根底影响的数值模拟分析 [J]. 爆破, 2015, 32(3): 49–54, 78. DOI: 10.3963/j.issn.1001-487X.2015.03.009.

    LIU L, ZHENG B X, CHEN M, et al. Numerical simulation analysis of influence of different detonation methods on bedrock in bench blasting [J]. Blasting, 2015, 32(3): 49–54, 78. DOI: 10.3963/j.issn.1001-487X.2015.03.009.
    [4] KNOCK C, DAVIES N. Blast waves from cylindrical charges [J]. Shock Waves, 2013, 23(4): 337–343. DOI: 10.1007/s00193-013-0438-7.
    [5] ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 73–84. DOI: 10.1016/j.ijrmms.2012.10.004.
    [6] LIU L, CHEN M, LU W B, et al. Effect of the location of the detonation initiation point for bench blasting [J]. Shock and Vibration, 2015(6−7): 1–11. DOI: 10.1155/2015/907310.
    [7] 冷振东, 范勇, 卢文波, 等. 孔内双点起爆条件下的爆炸能量传输与破岩效果分析 [J]. 岩石力学与工程学报, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.

    LENG Z D, FAN Y, LU W B, et al. Explosion energy transmission and rock-breaking effect of in-hole dual initiation [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2451–2462. DOI: 10.13722/j.cnki.jrme.2019.0474.
    [8] 向文飞, 舒大强, 朱传云. 起爆方式对条形药包爆炸应力场的影响分析 [J]. 岩石力学与工程学报, 2005, 24(9): 1624–1628. DOI: 10.3321/j.issn:1000-6915.2005.09.026.

    XIANG W F, SHU D Q, ZHU C Y. Impacts of detonating mode on blast stress field of linear explosive charge [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1624–1628. DOI: 10.3321/j.issn:1000-6915.2005.09.026.
    [9] 杨仁树, 郭洋, 李清, 等. 中间起爆柱状药包爆炸应力应变场演化规律 [J]. 煤炭学报, 2019, 44(11): 3423–3431. DOI: 10.13225/j.cnki.jccs.2018.1673.

    YANG R S, GUO Y, LI Q, et al. Evolution law on explosive stress and strain field of column charges at middle detonation position [J]. Journal of China Coal Society, 2019, 44(11): 3423–3431. DOI: 10.13225/j.cnki.jccs.2018.1673.
    [10] 高启栋, 卢文波, 冷振东, 等. 隧洞开挖过程中掏槽孔起爆位置的优选 [J]. 振动与冲击, 2018, 37(9): 8–16. DOI: 10.13465/j.cnki.jvs.2018.09.002.

    GAO Q D, LU W B, LENG Z D, et al. Optimization of cut-hole’s detonating position in tunnel excavation [J]. Journal of Vibration and Shock, 2018, 37(9): 8–16. DOI: 10.13465/j.cnki.jvs.2018.09.002.
    [11] 郭洋, 李清, 杨仁树, 等. 三维模型柱状药包爆生裂纹扩展规律研究 [J]. 振动与冲击, 2020, 39(10): 133–140, 184. DOI: 10.13465/j.cnki.jvs.2020.10.018.

    GUO Y, LI Q, YANG R S, et al. Study on crack propagation law of cylindrical charges in three-dimensional models [J]. Journal of Vibration and Shock, 2020, 39(10): 133–140, 184. DOI: 10.13465/j.cnki.jvs.2020.10.018.
    [12] 吴超, 周传波, 路世伟, 等. 柱状装药不同起爆方式的数值模拟研究 [J]. 爆破, 2016, 33(2): 74–77, 91. DOI: 10.3963/j.issn.1001-487X.2016.02.014.

    WU C, ZHOU C B, LU S W, et al. Numerical simulation on cylindrical charged explosives with different initiation [J]. Blasting, 2016, 33(2): 74–77, 91. DOI: 10.3963/j.issn.1001-487X.2016.02.014.
    [13] 张宝銔, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001: 271−274.
    [14] FAVREAU R F. Generation of strain waves in rock by an explosion in a spherical cavity [J]. Journal of Geophysical Research, 1969, 74(17): 4267–4280. DOI: 10.1029/JB074i017p04267.
    [15] BLAIR D. Seismic radiation from an explosive column [J]. Geophysics, 2010, 75(1): E55–E65. DOI: 10.1190/1.3294860.
    [16] LIU K W, LI X H, LI X B, et al. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges [J]. Journal of Central South University, 2016, 23(11): 2951–2957. DOI: 10.1007/s11771-016-3359-7.
    [17] HEELAN P A. Radiation from a cylindrical source of finite length [J]. Geophysics, 1953, 18(3): 685–696. DOI: 10.1190/1.1437923.
    [18] LARSON D B. Explosive energy coupling in geologic materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982, 19(4): 157–166. DOI: 10.1016/0148-9062(82)90886-5.
    [19] GRADY D E, KIPP M E, SMITH C S. Explosive fracture studies on oil shale [J]. Society of Petroleum Engineers Journal, 1980, 20(5): 349–356. DOI: 10.2118/8215-PA.
  • 期刊类型引用(11)

    1. 倪宏涛,黄月君,赵振夫,胡学中,陈明. DBDP水电站导流洞进水塔新浇混凝土爆破振动影响控制. 爆破. 2025(01): 10-17+80 . 百度学术
    2. 康普林,雷涛,李立峰. 考虑药包爆破动-静时序作用的漏斗形成机理. 爆炸与冲击. 2025(05): 142-158 . 本站查看
    3. 谭铭. 炸药性能对爆破地震波传播与能量衰减规律影响研究. 中国矿业. 2024(01): 193-199 . 百度学术
    4. 严志豪,高文学,汪艮忠,胡宇,张声辉,张小军. 连拱隧道中导洞不同起爆位置振动效应研究. 工程爆破. 2024(01): 141-148 . 百度学术
    5. 胡志坚,张周煜,张永涛,陈昌萍,刘辉,杜威. 双柱墩混凝土梁桥爆破拆除倒塌过程与机理研究. 中国公路学报. 2024(05): 67-79 . 百度学术
    6. 范勇,郭一鸣,冷振东,杨广栋,田斌. 交错起爆下爆炸应力波的碰撞机制与破岩效果. 爆炸与冲击. 2024(06): 92-104 . 本站查看
    7. 郭润泽,徐振洋,张海,刘万通,张启隆. 水孔装药下起爆方式对岩体损伤规律的影响研究. 黄金科学技术. 2024(06): 1090-1106 . 百度学术
    8. 杨仁树,赵勇,方士正,赵杰,王渝,刘朕. 起爆方式对间隔装药应力场分布及裂纹扩展的影响. 工程科学学报. 2023(05): 714-727 . 百度学术
    9. 冷振东,高启栋,卢文波,陈明,周桂松,范勇. 岩石钻孔爆破能量调控理论与应用技术研究进展. 金属矿山. 2023(05): 64-76 . 百度学术
    10. 杨琳,付天杰,郭华杰. 大规模深孔控制爆破起爆网路技术. 工程爆破. 2022(02): 62-69 . 百度学术
    11. 杨仁树,赵勇,赵杰,左进京,葛丰源,陈程,丁晨曦. 基于DIC技术的爆炸应力波过异质界面应变场演化规律实验研究. 爆炸与冲击. 2022(12): 52-67 . 本站查看

    其他类型引用(5)

  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
Cl-20基高爆速压装炸药的落锤冲击响应特性
徐风 等, 爆炸与冲击, 2025
多级柱面炸药内爆磁通量压缩技术研究
谷卓伟 等, 爆炸与冲击, 2024
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
Dnan基熔铸炸药的动态力学行为及点火特性
赵东 等, 高压物理学报, 2025
Hmx含量对pbt基推进剂撞击感度和非冲击点火反应特性的影响
杨年 等, 高压物理学报, 2024
爆轰加载下tatb基钝感炸药的冲击-卸载-再冲击实验装置设计与模拟
樊辉 等, 高压物理学报, 2024
Recent advances in targeting the undruggable proteins: from drug discovery to clinical trials
Xie, Xin et al., SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023
Simulation, verification, and prediction of thermal response of bridgewire in electro-explosive device
MEASUREMENT, 2025
Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening
NI Hui et al., EXPLOSION AND SHOCK WAVES, 2024
Powered by
图(23) / 表(2)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  434
  • PDF下载量:  117
  • 被引次数: 16
出版历程
  • 收稿日期:  2020-09-27
  • 修回日期:  2020-12-17
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回