基于单射流冲击试验的复合材料高速雨滴撞击损伤研究

侯乃丹 王旋 李玉龙

侯乃丹, 王旋, 李玉龙. 基于单射流冲击试验的复合材料高速雨滴撞击损伤研究[J]. 爆炸与冲击, 2021, 41(4): 041404. doi: 10.11883/bzycj-2020-0357
引用本文: 侯乃丹, 王旋, 李玉龙. 基于单射流冲击试验的复合材料高速雨滴撞击损伤研究[J]. 爆炸与冲击, 2021, 41(4): 041404. doi: 10.11883/bzycj-2020-0357
HOU Naidan, WANG Xuan, LI Yulong. High-speed raindrop impingement damage of composites based on single waterjet impact tests[J]. Explosion And Shock Waves, 2021, 41(4): 041404. doi: 10.11883/bzycj-2020-0357
Citation: HOU Naidan, WANG Xuan, LI Yulong. High-speed raindrop impingement damage of composites based on single waterjet impact tests[J]. Explosion And Shock Waves, 2021, 41(4): 041404. doi: 10.11883/bzycj-2020-0357

基于单射流冲击试验的复合材料高速雨滴撞击损伤研究

doi: 10.11883/bzycj-2020-0357
基金项目: 国家自然科学基金(11832015,11527803)
详细信息
    作者简介:

    侯乃丹(1995- ),女,博士研究生,hounaidan@163.com

    通讯作者:

    李玉龙(1961- ),男,博士,教授,liyulong@nwpu.edu.cn

  • 中图分类号: O347.4

High-speed raindrop impingement damage of composites based on single waterjet impact tests

  • 摘要: 飞行器高速飞越云雨区时,前表面会受到雨滴的冲击侵蚀。基于一级轻气炮搭建了一种单射流冲击试验平台用于材料雨蚀试验,可产生速度200~600 m/s、直径4~7 mm、头部呈光滑圆弧形的稳定水射流;并对一种碳纤维树脂基复合材料层合板进行了不同速度和直径的单射流冲击试验。结果表明,复合材料单次水射流冲击的典型损伤形貌为:冲击表面凹陷,中心几乎完好无损伤,周围产生一环状损伤带,环内有树脂去除、基体开裂、少量纤维断裂等损伤形式;内部损伤主要由基体开裂和层间分层组成。损伤尺寸呈现典型的各向异性,纵向尺寸大于横向尺寸;随射流速度和直径的增加,表面环状损伤和内部损伤的尺寸均向外扩展,环状损伤面积和内部分层面积也随之增加。水锤压力的压缩和卸载、侧向射流的剪切和应力波的相互作用是造成复合材料单射流冲击损伤的主要机理。
  • 图  1  液固冲击过程示意图

    Figure  1.  Diagram of liquid-solid impact

    图  2  单射流冲击试验装置

    Figure  2.  Single impact waterjet apparatus

    图  3  射流形态随位移的变化规律

    Figure  3.  Variation of the waterjet with stand-off distance

    图  4  单射流发生装置的水射流测试结果

    Figure  4.  Waterjet testing results of the single impact waterjet apparatus

    图  5  水射流单次冲击后复合材料试件表面典型损伤的显微镜观察结果

    Figure  5.  Microscopic results of the typical surface damage of CFRP specimen caused by single waterjet impact

    图  6  环形损伤区域的表面轮廓

    Figure  6.  Surface profiles of the annular damage area

    图  7  水射流冲击后试样C扫描结果

    Figure  7.  C-scanning result of the specimen after waterjet impact

    图  8  垂直于表面的横剖面显微结果

    Figure  8.  Microscopic results of the cross section perpendicular to the surface

    图  9  高速水射流冲击复合材料试样的典型损伤形貌示意图

    Figure  9.  Schematic diagram of typical damage modes of CFRP samples impacted by high-speed waterjets

    图  10  直径5.7 mm的不同速度的射流冲击复合材料试样的显微和C扫结果

    Figure  10.  Microscopic and C-scan results of CFRP samples impacted by waterjets with the same diameter of 5.7 mm at different jet velocities

    图  11  两种射流直径(4.9、5.7 mm)下损伤量化参数随射流速度的变化规律

    Figure  11.  Variation of damage quantification parameters with waterjet velocity under two jet diameters (4.9, 5.7 mm)

    图  12  速度557 m/s时不同直径射流冲击复合材料试样的显微和C扫结果

    Figure  12.  Microscopic and C-scan results of CFRP samples impacted by waterjets with different jet diameters at the same velocity of 557 m/s

    图  13  两种射流速度(428、557 m/s)下损伤量化参数随射流直径的变化规律

    Figure  13.  Variation of damage quantification parameters with waterjet diameter at two jet velocities (428, 557 m/s)

    图  14  表面环状中心无损伤尺寸试验值的非线性拟合结果

    Figure  14.  Nonlinear fitting results of the experimental values of the surface central undamaged region

    表  1  T700/7901单向板力学参数

    Table  1.   Mechanical properties of T700/7901 unidirectional laminates

    纤维体积分数φ/%E11/GPaE22/GPaG12/GPaν12Xt/MPaXc/MPaYt/MPaYc/MPaS12/MPa
    6611593.30.332300105042143116
    下载: 导出CSV

    表  2  不同速度和直径的水射流冲击复合材料试样的损伤结果

    Table  2.   Damage results of CFRP samples impacted by waterjets with different velocities and diameters

    序号射流速度v/(m·s−1)射流直径d/mmD2/mmD1/mmLx/mmLy/mmSxy/mm2
    13005.700000
    23434.900000
    33435.70.742.072.0042.4063.139
    43865.70.892.254.4313.30210.138
    54074.90.752.261.8862.4843.398
    64075.71.182.95.3034.69917.049
    74284.90.962.394.6362.8977.776
    84285.71.413.027.1035.22225.113
    94286.71.503.279.1546.14731.531
    104714.91.052.494.4544.30115.379
    115146.71.593.5411.9357.24645.216
    125574.91.512.7612.0248.04945.173
    135575.71.803.6312.5799.73275.772
    145576.31.903.7713.67310.96388.678
    下载: 导出CSV
  • [1] 石毓锬, 胡晓兰, 梁国正, 等. 飞行器天线罩的雨蚀及防护 [J]. 化工新型材料, 2001, 29(1): 6–10. DOI: 10.3969/j.issn.1006-3536.2001.01.002.

    SHI Y T, HU X L, LIANG G Z, et al. A review of rain erosion and protection of radomes [J]. New Chemical Materials, 2001, 29(1): 6–10. DOI: 10.3969/j.issn.1006-3536.2001.01.002.
    [2] ENGEL O G. Waterdrop collision with solid surface [J]. Journal of Research of the National Bureau of Standards, 1955, 54(5): 281–298. DOI: 10.6028/jres.054.033.
    [3] BOWDEN F P, BRUNTON J H. The deformation of solids by liquid impact at supersonic speeds [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1961, 263(1315): 433–450. DOI: 10.1098/rspa.1961.0172.
    [4] ADLER W F. Rain impact retrospective and vision for the future [J]. Wear, 1999, 233–235: 25–38. DOI: 10.1016/S0043-1648(99)00191-X.
    [5] FIELD J E. ELSI conference: invited lecture: liquid impact: theory, experiment, applications [J]. Wear, 1999, 233/234/235: 1–12. DOI: 10.1016/S0043-1648(99)00189-1.
    [6] TOBIN E F, YOUNG T M, RAPS D, et al. Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities [J]. Wear, 2011, 271(9–10): 2625–2631. DOI: 10.1016/j.wear.2011.02.023.
    [7] 施红辉, FIELD J E. 高速液体撞击下固体材料内的应力波传播 [J]. 中国科学G辑:物理学 力学 天文学, 2004, 34(5): 577–590. DOI: 10.3969/j.issn.1674-7275.2004.05.010.

    SHI H H, FIELD J E. Stress wave propagation in solid material under high velocity liquid impingement [J]. Scientic Sinica G: Physica Mechanica & Astronomica, 2004, 34(5): 577–590. DOI: 10.3969/j.issn.1674-7275.2004.05.010.
    [8] 毛靖儒, 施红辉, 俞茂铮, 等. 液滴撞击固体表面时的流体动力特性实验研究 [J]. 力学与实践, 1995, 17(3): 52–54. DOI: 10.6052/1000-0992-1995-071.

    MAO J R, SHI H H, YU M Z, et al. Experimental study on hydrodynamic characteristics of droplets impinging on solid surfaces [J]. Mechanics in Engineering, 1995, 17(3): 52–54. DOI: 10.6052/1000-0992-1995-071.
    [9] 孙弼, 鄢宇鹏, 张荻, 等. 液滴与可变形固面撞击的二维非线性激波模型 [J]. 应用力学学报, 1996, 13(3): 33–38.

    SUN B, YAN Y P, ZHANG D, et al. A two dimensional nonlinear shock model for the collision between a liquid drop and elastic plane [J]. Chinese Journal of Applied Mechanics, 1996, 13(3): 33–38.
    [10] 张荻, 谢永慧, 周屈兰. 液滴与弹性固体表面撞击过程的研究 [J]. 机械工程学报, 2003, 39(6): 75–78, 85. DOI: 10.3321/j.issn:0577-6686.2003.06.017.

    ZHANG D, XIE Y H, ZHOU Q L. Study on the impact between liquid drop and elastic solid [J]. Chinese Journal of Mechanical Engineering, 2003, 39(6): 75–78, 85. DOI: 10.3321/j.issn:0577-6686.2003.06.017.
    [11] 张荻, 谢永慧. 动叶水蚀疲劳寿命分析模型的研究 [J]. 中国电机工程学报, 2004, 24(10): 189–192. DOI: 10.3321/j.issn:0258-8013.2004.10.036.

    ZHANG D, XIE Y H. Numerical model for blade fatigue life of liquid corrosion in steam turbine [J]. Proceedings of the CSEE, 2004, 24(10): 189–192. DOI: 10.3321/j.issn:0258-8013.2004.10.036.
    [12] 王泽江, 陈旭明, 黄谦. 飞行器光学窗/罩材料雨滴侵蚀试验[C] // 第六届全国实验流体力学学术会议论文集. 太原: 中国力学学会, 中国空气动力学学会, 2004: 190−194.
    [13] GUJBA A K, HACKEL L, KEVORKOV D, et al. Water droplet erosion behaviour of Ti-6Al-4V and mechanisms of material damage at the early and advanced stages [J]. Wear, 2016, 358: 109–122. DOI: 10.1016/j.wear.2016.04.008.
    [14] LUISET B, SANCHETTE F, BILLARD A, et al. Mechanisms of stainless steels erosion by water droplets [J]. Wear, 2013, 303(1–2): 459–464. DOI: 10.1016/j.wear.2013.03.045.
    [15] BRUNTON J H. A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion—High speed liquid impact [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 260(1110): 79–85. DOI: 10.1098/rsta.1966.0031.
    [16] BOURNE N K. On impacting liquid jets and drops onto polymethylmethacrylate targets [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2056): 1129–1145. DOI: 10.1098/rspa.2004.1440.
    [17] COOK S S. Erosion by water-hammer [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1928, 119(783): 481–488. DOI: 10.1098/rspa.1928.0107.
    [18] SPRINGER G S, YANG C I. Model for the rain erosion of fiber reinforced composites [J]. AIAA Journal, 1975, 13(7): 877–883. DOI: 10.2514/3.60463.
    [19] ENGEL O G. Damage produced by high-speed liquid-drop impacts [J]. Journal of Applied Physics, 1973, 44(2): 692–704. DOI: 10.1063/1.1662246.
    [20] HEYMANN F J. On the shock wave velocity and impact pressure in high-speed liquid-solid impact [J]. Journal of Basic Engineering, 1968, 90(3): 400–402. DOI: 10.1115/1.3605114.
    [21] SEWARD C R, PICKLES C S J, FIELD J E. Single- and multiple-impact jet apparatus and results [C] // Proceedings Volume 1326, Window and Dome Technologies and Materials II. San Diego: SPIE, 1990: 280−290. DOI: 10.1117/12.22507.
    [22] BURSON-THOMAS C B, WELLMAN R, HARVEY T J, et al. Water droplet erosion of aeroengine fan blades: the importance of form [J]. Wear, 2019, 426: 507–517. DOI: 10.1016/j.wear.2018.12.030.
    [23] BOWDEN F P, FIELD J E. The brittle fracture of solids by liquid impact, by solid impact, and by shock [J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1964, 282(1390): 331–352. DOI: 10.1098/rspa.1964.0236.
    [24] BOURNE N K, OBARA T, FIELD J E. High-speed photography and stress gauge studies of jet impact upon surfaces [J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1997, 355(1724): 607–623. DOI: 10.1098/rsta.1997.0028.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  302
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 修回日期:  2020-11-04
  • 网络出版日期:  2021-03-18
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回