Calculation of equivalent charge weight per delay and vibration velocity prediction for millisecond delay blasting
-
摘要: 毫秒延时爆破存在同段雷管离散及分段振波叠加效应,对单响药量取值及质点峰值振速的预报带来极大困扰。设计开展毫秒延时爆破试验,建立群孔齐发爆破振速的计算模型,研究并构建炮孔数目对齐发爆破等效药量影响及其取值方法;并基于单孔爆破回归分析结果,提出修正的质点峰值振速与比例距离关系公式。结果表明,群孔齐发爆破等效药量比名义单响药量小,可利用缩比系数和折算炮孔数目进行计算,缩比系数随炮孔数目增加呈指数形式衰减;修正的质点峰值振速与比例距离公式引入的振波叠加因子可反映振波叠加对速度的影响,依据该公式计算得到的质点峰值振速预测值与实测值间平均绝对误差、平均相对误差及均方根误差分别为0.05 cm/s、9.52%、0.059 cm/s,用于现场爆破振动预测切实可行。Abstract: Drilling and blasting is the most economical rock fracture technology in water conservancy, transportation, mining and tunnel engineering. And the application of nonel detonator network in rock blasting is still the most widely used initiation method in engineering blasting practice. Due to the detonator delay error, there is a deviation between the actual initiation time and designed initiation time in the Nonel detonation network, which will cause the change of blasting time sequence and the overlapping of blast-holes. There are detonator dispersion phenomenon with the same delay time and superposition effect for seismic waves with different delay time, which brings great trouble to the value of charge weight per delay and the prediction of particle peak vibration velocity. In order to the predict particle peak vibration velocity more accurately and efficiently, the millisecond delay blasting test was conducted, and the calculation model of vibration velocity for group blast-hole simultaneous blasting with dispersed charge was established. The influence of the blast-hole number on the equivalent charge weight for simultaneous blasting and its value selection method were studied and constructed. The modified particle peak vibration velocity scaled distance formula and the particle peak vibration velocity prediction method were proposed based on the results of regression analysis of single-hole blasting. The results show that the equivalent charge weight of group blast-hole simultaneous blasting is smaller than the nominal charge weight per delay, and the equivalent charge weight of simultaneous blasting can be calculated by converting through the reduction coefficient, which decreases exponentially with the increase of the blast-hole number. The superposition effect of seismic waves with different delay time can be considered by introducing vibration wave superposition factor into the modified particle peak vibration velocity scaled distance formula. The average absolute error, average relative error and root mean square error between the actual and the predicted particle peak vibration velocity values are 0.05 cm/s, 9.52% and 0.059 cm/s, respectively. It is feasible to apply the modified particle peak vibration velocity proportional distance regression analysis method to the prediction and control of blasting vibration velocity in the field.
-
表 1 爆破参数
Table 1. Blasting parameters
爆破类型 孔径Φ/mm 孔距a/m 排距b/m 孔深l/m 装药长度l1/m 堵塞长度l2/m 单孔药量Q0/kg 31#孔爆破 115 14.3 8.8 5.5 81 32#孔爆破 115 15.5 11.0 4.5 100 毫秒延时爆破 115 6 4 14.3~16.9 9.8~10.9 4.5~6 89~95 注:现场爆破试验使用2#岩石乳化炸药,参见文献[29]将炮孔装药量折算为TNT当量. 表 2 毫秒延时爆破药量统计
Table 2. Charge statistics of millisecond delay blasting
炮孔排数i 炮孔编号 炮孔总药量/kg 炮孔平均装药量/kg [(i−1)×3+1] [(i−1)×3+2] [(i−1)×3+3] 1 91 95 93 279 93.0 2 89 94 94 277 92.3 3 90 92 93 275 91.7 4 92 91 92 275 91.7 5 91 92 93 276 92.0 6 92 91 92 275 91.7 7 92 92 92 276 92.0 8 91 92 92 275 91.7 9 92 92 92 276 92.0 10 92 92 93 277 92.3 注:现场爆破试验使用2#岩石乳化炸药,参见文献[29]将炮孔装药量折算为TNT当量 表 3 测点布置方案
Table 3. Layout scheme of measuring points
爆破类型 测点爆心距R/m 31#孔爆破 15 22 35 40 48 32#孔爆破 15 22 35 40 48 毫秒延时爆破 15 18 22 27 30 34 38 41 45 49 表 4 爆破振动测试数据
Table 4. Blasting vibration test data
31#孔爆破 32#孔爆破 毫秒延时爆破 R/m vp/(cm·s−1) Ds/(m·kg−1/3) R/m vp/(cm·s−1) Ds/(m·kg−1/3) R/m vp/(cm·s−1) Ds/(m·kg−1/3) 15 10.85 3.52 15 12.21 3.28 15 16.06 2.82 18 12.10 3.38 22 7.90 5.16 22 9.25 4.81 22 11.83 4.13 27 10.20 5.07 30 8.25 5.63 35 6.68 8.21 35 7.30 7.66 34 7.14 6.38 38 7.88 7.13 40 4.81 9.38 40 5.42 8.75 41 7.57 7.69 45 6.49 8.45 48 4.24 11.26 48 5.21 10.50 49 6.48 9.20 表 5 单孔爆破振速的实测值与预测值对比
Table 5. Comparison of blast vibration velocity for single-hole blasting between measured and predicted values
实测值/(cm·s−1) 预测值/(cm·s−1) 绝对误差/(cm·s−1) 相对误差/% 实测值/(cm·s−1) 预测值/(cm·s−1) 绝对误差/(cm·s−1) 相对误差/% 10.85 11.40 −0.55 5.05 12.21 12.03 0.18 1.46 7.90 8.50 0.60 7.59 9.25 8.97 0.28 3.03 6.68 5.95 0.73 10.89 7.30 6.28 1.02 14.00 4.81 5.37 −0.56 11.73 5.42 5.67 −0.25 4.59 4.24 4.67 −0.43 10.18 5.21 4.93 0.28 5.39 表 6 爆破设计参数及
$v_{\rm p} $ 值Table 6. Blasting design parameters and
$v_{\rm p} $ values爆破次数 孔径/mm 炮孔数目 最大单响药量/kg 爆心距/m 比例距离/(m·kg−1/3) vp/(cm·s−1) 绝对误差/(cm·s−1) 相对误差/% 实测值 预测值 1 90 32 486 224 28.55 1.15 1.16 0.01 0.77 90 32 486 241 30.72 1.04 1.03 0.01 1.42 90 32 486 268 34.16 0.91 0.86 0.05 5.27 90 32 486 300 38.24 0.78 0.72 0.06 7.43 90 32 486 347 44.23 0.68 0.58 0.10 14.51 90 32 486 390 49.71 0.39 0.49 0.10 26.65 2 90 21 319 353 51.76 0.51 0.47 0.04 8.24 90 21 319 252 36.95 0.80 0.76 0.04 4.84 90 21 319 277 40.62 0.72 0.66 0.06 8.51 90 21 319 309 45.31 0.52 0.56 0.04 7.99 90 21 319 398 58.36 0.34 0.40 0.06 18.25 3 90 31 326 319 46.44 0.55 0.54 0.01 1.39 90 31 326 332 48.33 0.46 0.51 0.05 11.55 90 31 326 353 51.39 0.47 0.47 0.00 0.52 90 31 326 381 55.47 0.35 0.43 0.08 22.32 90 31 326 419 61.00 0.48 0.38 0.10 20.54 90 31 326 457 66.53 0.39 0.35 0.04 11.37 4 90 28 525 262 32.55 0.94 0.93 0.01 0.83 90 28 525 275 34.16 0.76 0.86 0.10 13.42 90 28 525 297 36.89 0.73 0.76 0.03 4.54 90 28 525 326 40.50 0.65 0.66 0.01 1.81 90 28 525 366 45.46 0.48 0.56 0.08 16.43 90 28 525 406 50.43 0.54 0.48 0.06 10.30 注:由于生产爆破时使用数码电子雷管实现段间延期,数码电子雷管可确保设计延期时间与实际延期时间高度一致[37],因此表6中最大单响药 量取值为名义最大单响药量 -
[1] 何理, 钟东望, 李鹏, 等. 下穿隧道爆破荷载激励下边坡振动预测及能量分析 [J]. 爆炸与冲击, 2020, 40(7): 108–117. DOI: 10.11883/bzycj-2019-0255.HE L, ZHONG D W, LI P, et al. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel [J]. Explosion and Shock Waves, 2020, 40(7): 108–117. DOI: 10.11883/bzycj-2019-0255. [2] 武旭, 张云鹏, 郭奇峰. 台阶地形爆破振动放大与衰减效应研究 [J]. 爆炸与冲击, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06.WU X, ZHANG Y P, GUO Q F. Amplification and attenuation effect of blasting vibration on step topography [J]. Explosion and Shock Waves, 2017, 37(6): 1017–1022. DOI: 10.11883/1001-1455(2017)06-1017-06. [3] 何理, 钟冬望, 陈晨, 等. 岩质高边坡开挖施工的爆破振动监测与分析 [J]. 金属矿山, 2017(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002.HE L, ZHONG D W, CHEN C, et al. Monitoring and analysis of blasting vibration in high rocky slope excavation [J]. Metal Mine, 2017(1): 6–10. DOI: 10.3969/j.issn.1001-1250.2017.01.002. [4] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030. [5] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195. DOI: 10.1007/s11629-011-1023-0.CHEN M, LU W B, LI P, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195. DOI: 10.1007/s11629-011-1023-0. [6] 龚相超, 钟冬望, 司剑峰, 等. 高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应 [J]. 爆炸与冲击, 2020, 40(2): 13–25. DOI: 10.11883/bzycj-2018-0443.GONG X C, ZHONG D W, SI J F, et al. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves [J]. Explosion and Shock Waves, 2020, 40(2): 13–25. DOI: 10.11883/bzycj-2018-0443. [7] QIU X Y, SHI X Z, GOU Y G, et al. Short-delay blasting with single free surface: results of experimental tests [J]. Tunnelling and Underground Space Technology, 2018, 74: 119–130. DOI: 10.1016/j.tust.2018.01.014. [8] CARDU M, CORAGLIOTTO D, ORESTE P. Analysis of predictor equations for determining the blast-induced vibration in rock blasting [J]. International Journal of Mining Science and Technology, 2019, 29(6): 905–915. DOI: 10.1016/j.ijmst.2019.02.009. [9] DOWDING C H. Blast vibration monitoring and control [M]. New Jersey: Prentice-Hall, 1985: 167−171. [10] 杨年华. 爆破振动信号精细解读与振动控制[C]// 爆破工程技术交流论文集.北京: 中国铁道学会工程分会, 2018. [11] 顾毅成. 对毫秒延时爆破地震公式的讨论 [J]. 铁道建筑, 2005(S1): 73–75. DOI: 10.3969/j.issn.1003-1995.2005.z1.027.GU Y C. Discussion on seismic formula concerning multistage millisecond explosion [J]. Railway Engineering, 2005(S1): 73–75. DOI: 10.3969/j.issn.1003-1995.2005.z1.027. [12] 刘殿中. 工程爆破实用手册[M]. 北京: 地震出版社, 1981.LIU Dianzhong. Practical manual of engineering blasting [M]. Beijing: Earthquake Press, 1981. [13] 吴绵拔. 土岩微差爆破的振动效应 [J]. 土工基础, 2005(06): 75–76. DOI: 10.3969/j.issn.1004-3152.2005.06.024.WU M B. The vibration effect of micro timelag in soil and rock [J]. Soil Engineering and Foundation, 2005(06): 75–76. DOI: 10.3969/j.issn.1004-3152.2005.06.024. [14] 薛孔宽, 唐光荣, 曹恒安, 等. 分段微差爆破地震效应的叠加分析 [J]. 爆破, 1991, 8(3): 67–71. DOI: CNKI:SUN:BOPO.0.1991-03-019.XUE K K, TANG G R, CAO H A, et al. Superposition analysis of seismic effect of segmented millisecond blasting [J]. Blasting, 1991, 8(3): 67–71. DOI: CNKI:SUN:BOPO.0.1991-03-019. [15] 龙源, 冯长根, 徐全军, 等. 爆破地震波在岩石介质中传播特性与数值计算研究 [J]. 工程爆破, 2000(3): 1–7. DOI: 10.3969/j.issn.1006-7051.2000.03.001.LONG Y, FENG C G, XU Q J, et al. Study on propagation characteristics of blasting seismic waves in a rock medium and numerical calculation [J]. Engineering Blasting, 2000(3): 1–7. DOI: 10.3969/j.issn.1006-7051.2000.03.001. [16] 杨年华. 基于经验格林函数方法的爆破振动预测 [J]. 工程爆破, 2016, 22(5): 32–36. DOI: 10.3969/j.issn.1006-7051.2016.05.007.YANG N H. Prediction of blasting vibration based on empirical Green’s function method [J]. Engineering Blasting, 2016, 22(5): 32–36. DOI: 10.3969/j.issn.1006-7051.2016.05.007. [17] 王林峰, 邓冰杰, 莫诎, 等. 基于概率论的爆破振动安全评估与控制 [J]. 振动与冲击, 2020, 39(14): 122–129. DOI: 10.13465/j.cnki.jvs.2020.14.018.WANG L F, DENG B J, MO Q, et al. Safety assessment and control of blasting vibration based on the probability theory [J]. Journal of Vibration and Shock, 2020, 39(14): 122–129. DOI: 10.13465/j.cnki.jvs.2020.14.018. [18] TUMENBAYAR B Y, 夏岸雄, 张建华, 等. 基于遗传算法的神经网络在爆破振动预测中的应用 [J]. 爆破, 2014, 31(3): 140–144. DOI: 10.3963/j.issn.1001-487X.2014.03.29.TUMENBAYAR B Y, XIA A X, ZHANG J H, et al. Application of neural network based on genetic algorithm in prediction of blasting vibration [J]. Blasting, 2014, 31(3): 140–144. DOI: 10.3963/j.issn.1001-487X.2014.03.29. [19] SHI X Z, ZHOU J. Prediction residential house’s damage effect near openpit against blasting vibration based on SVM with grid searching method/genetic algorithm [J]. Advanced Science Letters, 2012, 11(1): 238–243. DOI: 10.1166/asl.2012.2980. [20] 施建俊, 李庆亚, 张琪, 等. 基于Matlab和BP神经网络的爆破振动预测系统 [J]. 爆炸与冲击, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06.SHI J J, LI Q Y, ZHANG Q, et al. Forecast system for blasting vibration velocity peak based on Matlab and BP neural network [J]. Explosion and Shock Waves, 2017, 37(6): 1087–1092. DOI: 10.11883/1001-1455(2017)06-1087-06. [21] HASANIPANAH M, FARADONBEH R S, AMNIEH H B, et al. Forecasting blast-induced ground vibration developing a CART model [J]. Engineering with Computers, 2016, 33(2): 307–316. DOI: 10.1007/s00366-016-0475-9. [22] YUAN Q, ZHAI S H, WU L, et al. Blasting vibration velocity prediction based on least squares support vector machine with particle swarm optimization algorithm [J]. Geosystem Engineering, 2019, 22(5). DOI: 10.1080/12269328.2019.1607570. [23] HASANIPANAH M, NADERI R, KASHIR J, et al. Prediction of blast-produced ground vibration using particle swarm optimization [J]. Engineering with Computers, 2016, 33: 173–179. DOI: 10.1007/s00366-016-0462-1. [24] 杨年华, 张乐. 爆破振动波叠加数值预测方法 [J]. 爆炸与冲击, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)01-0084-07.YANG N H, ZHANG L. Blasting vibration waveform prediction method based on superposition principle [J]. Explosion and Shock Waves, 2012, 32(1): 84–90. DOI: 10.11883/1001-1455(2012)01-0084-07. [25] 钟冬望, 何理, 操鹏, 等. 爆破振动持时分析及微差爆破延期时间优选 [J]. 爆炸与冲击, 2016, 36(5): 703–709. DOI: 10.11883/1001-1455(2016)05-0703-07.ZHONG D W, HE L, CAO P, et al. Analysis of blasting vibration duration and optimizing of delayed time interval for millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(5): 703–709. DOI: 10.11883/1001-1455(2016)05-0703-07. [26] 凌同华, 李夕兵, 王桂尧. 爆破震动灾害主动控制方法研究 [J]. 岩土力学, 2007(7): 1439–1442. DOI: 10.3969/j.issn.1000-7598.2007.07.029.LIN T H, LI X B, WANG G Y. A study on initiative control of blast vibration damages [J]. Rock and Soil Mechanics, 2007(7): 1439–1442. DOI: 10.3969/j.issn.1000-7598.2007.07.029. [27] YANG R L, LOWNDS M. Modeling the effect of delay scatter on peak particle velocity of blast vibration using a multiple seed waveform vibration model [J]. Blasting and Fragmentation, 2011, 5: 31−46. DOI: https://www.researchgate.net/publication/311923105. [28] BLAIR D P. Non-linear superposition models of blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 235–247. DOI: 10.1016/j.ijrmms.2007.05.002. [29] 范俊余, 方 秦, 张亚栋, 等. 岩石乳化炸药TNT当量系数的试验研究 [J]. 兵工学报, 2011, 32(10): 1243–1249.FAN J Y, FANG Q, ZHANG Y D, et al. Experimental investigation on the TNT equivalence coefficient of a rock emulsion explosive [J]. Acta Armamentarii, 2011, 32(10): 1243–1249. [30] 孙永江, 江利民. 东非地区中低温敏化技术生产乳化炸药的组分与性能分析 [J]. 爆破器材, 2020(5): 42–46. [31] 徐俊峰, 马宏昊, 沈兆武, 等. 近临界厚度乳化炸药在金属箔焊接中的应用 [J]. 火炸药学报, 2020, 43(3): 282–286, 292. DOI: 10.14077/j.issn.1007-7812.201907031.XU JF, MA H H, SHEN Z W, et al. Application of near critical thickness emulsion explosive in welding of metal foils [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 282–286, 292. DOI: 10.14077/j.issn.1007-7812.201907031. [32] AGRAWAL H, MISHRA A K. Probabilistic analysis on scattering effect of initiation systems and concept of modified charge per delay for prediction of blast induced ground vibrations [J]. Measurement, 2018, 130: 306–317. DOI: 10.1016/j.measurement.2018.08.032. [33] 杨月平. 非电起爆网路可靠性研究及其计算评价软件开发[D]. 长沙: 中南大学, 2005: 34−35.YANG Y P. Study on the reliability of nonel detonation network and software development for reliability evaluation [D]. Changsha: Central South University, 2005: 34−35. [34] 杨志红. 微差起爆技术及其对爆破效应影响研究[D]. 武汉: 武汉大学, 2005: 50−52.YANG Z H. Study on millisecond delay blasting and its influence on blasting effect [D]. Wuhan: Wuhan University, 2005: 50−52. [35] SINGH P K, SIRVEIYA A K, BABUK N, et al. Evolution of effective charge weight per delay for prediction of ground vibrations generated from blasting in a limestone mine [J]. International Journal of Mining, Reclamation and Environment, 2006, 20(1): 4–19. DOI: 10.1080/13895260500286050. [36] AGRAWAL H, MISHRA A K. Evaluation of initiating system by measurement of seismic energy dissipation in surface blasting [J]. Arabian Journal of Geosciences, 2018, 11: 345. DOI: 10.1007/s12517-018-3683-3. [37] 何理. 临近边坡精确延时控制爆破地震效应研究[D].武汉: 武汉科技大学, 2015.HE L. The research of blasting seismic effect controlling with precise time delay technology nearby slope [D]. Wuhan: Wuhan University of Science and Technology, 2015. -