论心脏功能的“泵说”与“波说”

王晖 王礼立 缪馥星 龚文波 浣石 徐冲

王晖, 王礼立, 缪馥星, 龚文波, 浣石, 徐冲. 论心脏功能的“泵说”与“波说”[J]. 爆炸与冲击, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386
引用本文: 王晖, 王礼立, 缪馥星, 龚文波, 浣石, 徐冲. 论心脏功能的“泵说”与“波说”[J]. 爆炸与冲击, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386
WANG Hui, WANG Lili, MIAO Fuxing, GONG Wenbo, HUAN Shi, XU Chong. On “pump theory” and “wave theory” of cardiac function[J]. Explosion And Shock Waves, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386
Citation: WANG Hui, WANG Lili, MIAO Fuxing, GONG Wenbo, HUAN Shi, XU Chong. On “pump theory” and “wave theory” of cardiac function[J]. Explosion And Shock Waves, 2020, 40(11): 111101. doi: 10.11883/bzycj-2020-0386

论心脏功能的“泵说”与“波说”

doi: 10.11883/bzycj-2020-0386
基金项目: 国家自然科学基金(11872218,11572161);浙江省医药卫生科研项目(2018KY712);宁波市首批医疗卫生品牌学科基金(PPXK2018-07)
详细信息
    作者简介:

    王 晖(1941- ),男,主任中医师,教授,zhengyedoc@163.com

    通讯作者:

    王礼立(1934- ),男,教授,博士生导师,wanglili@nbu.edu.cn

  • 中图分类号: O347.4

On “pump theory” and “wave theory” of cardiac function

  • 摘要: 分析了心脏功能的“泵说”和“波说”。研究表明,心脏扮演的角色实际上不是泵,而是脉搏波发生器,产生一系列携带能量的脉搏波。每个脉搏波由升支和降支组成。前者对应于加载过程:压力、粒子速度、能量和血氧饱和度均随时间升高。而后者则对应于卸载过程:压力、粒子速度、能量以及血氧饱和度都下降,直至为零。因此,“泵说”中诸如Windkessel效应、一机二泵和舒张泵等概念都难以成立。所谓约1.5 W的心脏功率实质上表征了每个脉搏波的功率。针对脉搏波是流-固耦合和纵波-横波耦合的复杂波之特征,研究表明,能量的主要部分(99.99%)由横波携带,它沿固体血管传播,损耗低,效率高。研究还表明,血管分支处广义波阻抗的增大有助于抵消脉搏波传播中的衰减耗散,升高传入血管分支的脉搏波脉压,可视为人体的一种自我调节机制。
  • 图  1  心脏功率随主动脉血压和血液流动输出的变化

    Figure  1.  The dependence of cardiac power on the aortic mean pressure and the cardiac output

    图  2  动脉血管涨缩比拟为手压救火泵空气室的储能器效应[5, 20]

    Figure  2.  Arterial vasoconstriction compared to the accumulator effect of the air chamber of a hand pressure fire pump[5, 20]

    图  3  本构曲线p-v及其与波速c的关系

    Figure  3.  The constitutive curve p-v and its relation with wave velocity c

    图  4  脉搏波在动脉中的传播

    Figure  4.  Pulse wave propagation in the artery

    图  5  内能比随Kb/EvDv/hv的变化

    Figure  5.  Internal energy ratio varying with Kb/Ev and Dv/hv

    图  6  血氧饱和度随氧分压和pH值的变化[23]

    Figure  6.  Blood oxygen saturation varying with oxygen partial pressure and pH value[23]

  • [1] 孙庆伟, 王春梅, 高艳华, 等. 医用生理学[M]. 北京: 中国医药科技出版社, 2000.
    [2] 朱思明. 医用生理学[M]. 北京: 北京科学出版社, 2002.
    [3] HALL J E. Guyton and Hall textbook of medical physiology [M]. Philadelphia: Elsevier, 2016.
    [4] BARRETT K E, BARMAN S M, BROOKS H L, et al. Ganong’s review of medical physiology [M]. 26th ed. New York: McGraw-Hill Education, 2019.
    [5] SALVI P. Pulse waves: how vascular hemodynamics affects blood pressure [M]. 2nd ed. Cham: Springer, 2017.
    [6] EULER L. Principia pro motu sanguinis per arterias determinando [M]. Opera Postuma, 1862: 814−823.
    [7] SKALAK R, KELLER S R, SECOMB T W. Mechanics of blood flow [J]. Journal of Biomechanical Engineering, 1981, 103(2): 102–115. DOI: 10.1115/1.3138253.
    [8] 孙广仁. 中医基础理论[M]. 北京: 中国中医药出版社, 2002.
    [9] WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse wave system from the view-point of traditional Chinese medicine [C] // Proceedings of the ASME 2016, 35th International Conference on Ocean, Offshore and Arctic Engineering. Busan, South Korea: ASME, 2016. DOI: 10.1115/OMAE2016-55106.
    [10] 王礼立, 王晖. 脉搏波系统的力学模型及反演兼对若干中医学问题的讨论 [J]. 力学学报, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.

    WANG L L, WANG H. Mechanics modeling and inverse analyses of pulse waves system with discussions on some concepts in the traditional Chinese medicine [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1416–1424. DOI: 10.6052/0459-1879-15-322.
    [11] 王礼立, 王晖, 杨黎明, 等. 论脉搏波客观化和定量化研究的症结所在 [J]. 中华中医药杂志, 2017, 32(11): 4855–4863. DOI: CNKI:SUN:BXYY.0.2017-11-020.

    WANG L L, WANG H, YANG L M, et al. Crux of objectification and quantification of pulse waves [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(11): 4855–4863. DOI: CNKI:SUN:BXYY.0.2017-11-020.
    [12] 王唯工. 气血的弦律[M]. 台北: 大塊文化, 2010.
    [13] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [14] COTTER G, WILLIAMS S G, VERED Z, et al. Role of cardiac power in heart failure [J]. Current Opinion in Cardiology, 2003, 18(3): 215–222. DOI: 10.1097/00001573-200305000-00007.
    [15] ASKARI A T, MESSERLI A W. Cardiovascular hemodynamics: an introductory guide [M]. New York: Humana Press, 2019.
    [16] FUSTER R, O’ROURKE R, WALSH R, et al. Hurst’s the heart [M]. 12th ed. New York: The McGraw-Hill Companies, Inc, 2008.
    [17] NOSÉ Y, YOSHIKAWA M, MURABAYASHI S, et al. Development of rotary blood pump technology: past, present, and future [J]. Artificial Organs, 2000, 24(6): 412–420. DOI: 10.1046/j.1525-1594.2000.06634.x.
    [18] NOSÉ Y, MOTOMURA T. Is it a mistake to develop a totally implantable blood pump for destination therapy? [J]. Artificial Organs, 2005, 29(2): 93–94. DOI: 10.1111/j.1525-1594.2005.29031.x.
    [19] BEHBAHANI M, BEHR M, HORMES M, et al. A review of computational fluid dynamics analysis of blood pumps [J]. European Journal of Applied Mathematics, 2009, 20(4): 363–397. DOI: 10.1017/S0956792509007839.
    [20] NICHOLS W W, O'ROURKE M, VLACHOPOULOS C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles [M]. 6th ed. London: CRC Press, 2011.
    [21] 缪馥星, 王晖, 王礼立, 等. 血液-血管耦合特性与脉搏波传播特性的关系 [J]. 爆炸与冲击, 2020, 40(4): 031101. DOI: 10.11883/bzycj-2020-0082.

    MIAO Fuxing, WANG Hui, WANG Lili, et al. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves [J]. Explosion and Shock Waves, 2020, 40(4): 031101. DOI: 10.11883/bzycj-2020-0082.
    [22] WANG LIN Y Y, WANG W K. A hemodynamics model to study the collective behavior of the ventricular-arterial system [J]. Journal of Applied Physics, 2013, 113(2): 024702. DOI: 10.1063/1.4775754.
    [23] WEBSTER J G. Design of pulse oximeters [M]. London: CRC Press, 1997.
  • 加载中
图(6)
计量
  • 文章访问数:  1791
  • HTML全文浏览量:  1805
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-10-21
  • 刊出日期:  2020-11-05

目录

    /

    返回文章
    返回