A review on internal blast damage effects of multi-box type structures
-
摘要: 结构内部爆炸破坏机理和规律是常规武器毁伤效能预测与评估、建筑物和舰船抗爆防护设计的重要支撑。基于结构内爆炸载荷、内部爆炸作用下结构塑性响应、内部爆炸作用下箱壁结构破坏模式、内部爆炸作用下多箱型结构破坏模式和分布四个方面详细论述了箱型结构内部爆炸破坏的研究现状及存在的问题,并对内部爆炸后续研究给出了建议。建议研究并建立更加复杂的结构内部爆炸载荷和破坏效应描述模型、内部爆炸作用下箱壁的动力响应机理、多箱型结构与内部爆炸波产生的耦合效应、内部爆炸作用下结构的破坏模式和破坏范围的快速准确预测方法等。Abstract: The damage mechanisms of structures under internal blast are important for the prediction and evaluation of damage effects of conventional weapons and the design of anti-explosion structures of buildings and ships. The researches status and existing problems are discussed in this paper, based on the following four aspects as the internal explosion loads on structures, the plastic responses of structures to internal explosion loads, the damage modes of box-wall structures under internal explosion loads, and the damage modes and distribution of multi-box structures under internal explosion loads. With respect to an internal blast load, it is recognized that the blast model can be divided into dynamic high-pressure stage and quasi-static pressure stage. The former is formed by the initial shock wave and reflection wave while the latter is mainly composed of expansion of detonation gas and chemical energy released by explosion. In regard to the plastic response of the structure under the internal blast load, the studies have shown that quasi-static pressure plays an important role in the response process. With respect to the damage mode of the internal blast loaded structure, the damage mode is greatly affected by the pressure relief mode and pressure relief speed, studies on the damage modes of the beam and plate were introduced. As regards the damage mode and distribution of multi-box structures under the internal blast load, the internal explosion damage of the metal box structure of ships was mainly introduced. Most of the current researches focus on the damage features and there is rarely systematic understanding and analysis for the damagemechanisms. Through the review of the research on the damage and damage of the structures under the internal blast load, suggestions are provided for further researches on: (1) the models to describe the internal explosion loads on more complex structures and the corresponding damage effects; (2) the mechanisms of dynamic response of the box walls to internal blast load; (3) the coupling effect of multi-box structures with internal explosion waves and detonation products; (4) the methods to quickly and accurately predict the damage mode, damage range and damage degree of structures under internal explosion loads.
-
Key words:
- internal blast /
- steel box structure /
- damage mode /
- damage range /
- dimensionless number
-
超高速碰撞是指这样一类碰撞:碰撞所产生的冲击压强远远大于(弹靶)材料的强度。在超高速碰撞的最初阶段,材料的性态类似于可压缩流体,遵从流体力学定律。小天体对地球的撞击、空间碎片对航天器的撞击、动能武器对目标的撞击是典型的超高速碰撞现象。
超高速碰撞研究的兴起与航天工程、武器工程、地球及行星科学等领域的需求密不可分。20世纪50年代中期,由于航天安全和反弹道导弹技术的需要,世界主要军事和科技大国大力开展超高速碰撞研究。几十年来,在超高速加载与试验技术、高压状态方程、厚靶成坑、材料破碎与结构解体、碎片云膨胀规律、空间碎片防护结构、超高速碰撞数值计算等方面研究取得了较大进展。进入21世纪以来,超高速碰撞研究与力学、航空宇航科学与技术、兵器科学与技术、材料科学与工程、物理、天文学等相关学科领域进一步交叉融合,不仅在航天器空间碎片防护、反弹道导弹、装甲与反装甲、核反应堆安全防护设计、惯性约束聚变等工程领域发挥了重要作用,而且也促进了极端条件下材料的性质和状态方程、生命起源、陨石坑形成、高分辨诊断技术、多物理场多尺度数值模拟技术等基础研究的快速发展。
为促进我国在超高速碰撞领域最新研究成果的交流,探讨其发展趋势,推动该领域及相关学科的进一步发展,《爆炸与冲击》编辑部于2019年策划了“超高速碰撞”专题。专题征集了中国工程物理研究院、中国空间技术研究院、中国空气动力研究与发展中心、西北核技术研究院、哈尔滨工业大学、北京理工大学等单位提交的9篇论文,从不同侧面反映了近几年我国相关单位在该领域取得的最新成果。该专题在编辑、出版过程中得到了作者、审稿专家、编委和《爆炸与冲击》编辑部的大力支持,在此表示衷心的感谢。
北京理工大学教授、博士生导师 张庆明 《爆炸与冲击》副主编 -
-
[1] CCTV-7国防军事频道. 精武先锋导弹营长罗寅生: 披坚执锐只为亮剑时刻[EB/OL]. http://tv.cctv.com, 2018-6-23. [2] 张舵. 建筑物内爆炸的毁伤效应研究[D]. 长沙: 国防科学技术大学, 2007. [3] BAKER W E. Explosion hazards and evaluation [M]. New York: Elsevier Publishing Company, 1983. [4] 邬玉斌, 田宇隆, 张斌. 地下建筑内爆炸冲击波荷载分布规律研究 [J]. 武汉理工大学学报, 2012, 34(9): 88–93. DOI: 10.3963/j.issn.1671-4431.2012.09.019.WU Y B, TIAN Y L, ZHANG B. Distribution law of in-underground structure explosion-induced shock wave load [J]. Journal of Wuhan University of Technology, 2012, 34(9): 88–93. DOI: 10.3963/j.issn.1671-4431.2012.09.019. [5] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011. [6] LU Y, XU K. Prediction of debris launch velocity of vented concrete structures under internal blast [J]. International Journal of Impact Engineering, 2007, 34(11): 1753–1767. DOI: 10.1016/j.ijimpeng.2006.09.096. [7] CHAN P C, KLEIN H H. A study of blast effects inside an enclosure [J]. Journal of Fluids Engineering, 1994, 116(3): 450–455. DOI: 10.1115/1.2910297. [8] 林俊德. 封闭空间的化爆荷载与沙墙消波 [J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 559–566. DOI: 10.3969/j.issn.1009-3443.2007.06.001.LIN J D. Chemical explosion loads in enclosed space and wave attenuation of sand wall [J]. Journal of PLA University of Science and Technology, 2007, 8(6): 559–566. DOI: 10.3969/j.issn.1009-3443.2007.06.001. [9] BAKER W E. 空中爆炸[M]. 江科, 译. 北京: 原子能出版社, 1982. [10] BANGASH M Y H, BANGASH T. Explosion-resistant buildings [M]. Berlin, Heidelberg: Springer, 2006. DOI: 10.1007/3-540-31289-7. [11] US Department of Defense. UFC3-340-02 structures to resist the effects of accidental explosions [S]. US, US Department of Defense, 2008. [12] WEIBULL H R W. Pressures recorded in partially closed chambers at explosion of TNT charges [J]. Annals of the New York Academy of Sciences, 1968, 152(1): 357–361. DOI: 10.1111/j.1749-6632.1968.tb11987.x. [13] JACKSON W F. The containment of blast effects from the detonation of small high explosive charges: ADA105164 [R]. US, Defence Technical Information Center, 1981: 87–89. [14] ANDERSON J G, KATSELIS G, CAPUTO C. Analysis of a generic warhead part I: experimental and computational assessment of free field overpressure: DSTO-TR-1313 [R]. Edinburgh: DSTO Systems and Sciences Laboratory, 2002. [15] MARCHAND K A, COX P A, POLCYN M A. A design guide and specification for small explosive containment structures: SAND-94-2255 [R]. Washington, DC: The Magazine of the American Society of Civil Engineers, 1994. DOI: 10.2172/10120233. [16] 王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497.WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497. [17] HU Y, WU C Q, LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–43. DOI: 10.1260/2041-4196.2.1.21. [18] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Some characteristics of an interior explosion within a room without venting [J]. Structural Engineering and Mechanics, 2011, 38(5): 633–649. DOI: 10.12989/sem.2011.38.5.633. [19] WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737–750. DOI: 10.1016/j.jlp.2013.02.001. [20] 李营, 张磊, 杜志鹏, 等. 舱室结构在战斗部舱内爆炸作用下毁伤特性的实验研究 [J]. 船舶力学, 2018, 22(8): 993–1000. DOI: 10.3969/j.issn.1007-7294.2018.08.009.LI Y, ZHANG L, DU Z P, et al. Experiment investigation on damage characteristic of cabins under warhead internal blast [J]. Journal of Ship Mechanics, 2018, 22(8): 993–1000. DOI: 10.3969/j.issn.1007-7294.2018.08.009. [21] CODINA R, AMBROSINI D. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading [J]. Shock Waves, 2018, 28(2): 227–241. DOI: 10.1007/s00193-017-0733-9. [22] BAKER W E, OLDHAM G A. Estimates of blowdown of quasi-static pressures invented chambers: AD-AU25 502 [R]. San Antonio, TX: Southwest Research Institute, 1975. [23] ESPARZA E D, BAKER W E, OLDHAM G A. Blast pressures inside and outside suppressive structures: AD-AU25 504 [R]. San Antonio, TX: Southwest Research Institute, 1975. [24] KEENAN W A, TANCRETO J E. Blast environment from fully and partially vented explosions in cubicles: ADA019026 [R]. Dover, NJ: Department of the Army Picatinny Arsenal, 1975. [25] EDRI I, SAVIR Z, FELDGUN V R, et al. On blast pressure analysis due to a partially confined explosion: I. experimental studies [J]. International Journal of Protective Structures, 2011, 2(1): 1–20. DOI: 10.1260/2041-4196.2.1.1. [26] 徐维铮, 吴卫国. 泄压空间内爆炸温度载荷的影响规律研究(二)−泄压口大小 [J]. 应用力学学报, 2020, 37(3): 1337–1342. DOI: 10.11776/cjam.37.03.D107.XU W Z, WU W G. Research on influence laws on the explosion temperature inside venting space (2)—venting hole size [J]. Chinese Journal of Applied Mechanics, 2020, 37(3): 1337–1342. DOI: 10.11776/cjam.37.03.D107. [27] 张玉磊, 陈华, 韩璐, 等. 泄压口面积对温压炸药内爆炸准静态压力的影响 [J]. 火炸药学报, 2020, 43(5): 521–525. DOI: 10.14077/j.issn.1007-7812.201909024.ZHANG Y L, CHEN H, HAN L, et al. Effect of venting area on quasi-static pressure of internal explosion for thermobaric explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 521–525. DOI: 10.14077/j.issn.1007-7812.201909024. [28] 谷鸿平, 姚术健, 张舵, 等. 结构内部爆炸冲击波载荷的相似特性 [J]. 火炸药学报, 2019, 42(6): 621–625. DOI: 10.14077/j.issn.1007-7812.201809010.GU H P, YAO S J, ZHANG D, et al. Study on the scaling similarity characteristics of structural internal blast loading [J]. Chinese Journal of Explosives & Propellants, 2019, 42(6): 621–625. DOI: 10.14077/j.issn.1007-7812.201809010. [29] 金朋刚, 王晓峰, 郭炜, 等. 温压炸药爆炸释热特性研究 [J]. 爆破器材, 2014, 43(3): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.03.001.JIN P G, WANG X F, GUO W, et al. Research on the heat release characters of TBX explosion [J]. Explosive Materials, 2014, 43(3): 1–4. DOI: 10.3969/j.issn.1001-8352.2014.03.001. [30] 严家佳, 金朋刚, 李鸿宾, 等. 有限空间中温压炸药后燃烧效应的试验研究 [J]. 科学技术与工程, 2015, 15(17): 154–157, 163. DOI: 10.3969/j.issn.1671-1815.2015.17.028.YAN J J, JIN P G, LI H B, et al. Experiment investigation of thermobaric explosive afterburn effect in finite space [J]. Science Technology and Engineering, 2015, 15(17): 154–157, 163. DOI: 10.3969/j.issn.1671-1815.2015.17.028. [31] 徐维铮, 吴卫国. 密闭空间内爆炸温度场数值计算及其特性研究 [J]. 应用力学学报, 2020, 37(1): 280–285. DOI: 10.11776/cjam.37.01.D099.XU W Z, WU W G. Numerical calculation of explosion temperature field and its characteristics in closed space [J]. Chinese Journal of Applied Mechanics, 2020, 37(1): 280–285. DOI: 10.11776/cjam.37.01.D099. [32] BAKER W E. The elastic-plastic response of thin spherical shells to internal blast loading [J]. Journal of Applied Mechanics, 1960, 27(1): 139–144. DOI: 10.1115/1.3643888. [33] 诺曼•琼斯. 结构冲击[M]. 许骏, 蒋平, 译. 2版. 北京: 国防工业出版社, 2018: 145−159. [34] 孙琦, 董奇, 杨沙, 等. 内爆炸准静态压力对球形容器弹塑性动态响应的影响 [J]. 含能材料, 2020, 28(1): 25–31. DOI: 10.11943/CJEM2019078.SUN Q, DONG Q, YANG S, et al. Effects of quasi-static pressure on dynamic elastic-plastic response of spherical vessels under internal blast [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 25–31. DOI: 10.11943/CJEM2019078. [35] 董奇, 胡八一. 单层球形金属爆炸容器弹性动力响应研究进展[C] // 中国力学大会暨钱学森诞辰100周年纪念大会. 哈尔滨, 2011. [36] YU T X, CHEN X W, CHEN Y Z. Elastic-plastic beam-on-foundation subjected to mass impact or impulsive loading [J]. Computers & Structures, 2002, 80(26): 1965–1973. DOI: 10.1016/S0045-7949(02)00292-4. [37] MENKES S B, OPAT H J. Broken beams: tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. DOI: 10.1007/BF02322734. [38] LIU J H, JONES N. Experimental investigation of clamped beams struck transversely by a mass [J]. International Journal of Impact Engineering, 1987, 6(4): 303–335. DOI: 10.1016/0734-743X(87)90097-2. [39] SHEN W Q, JONES N. A failure criterion for beams under impulsive loading [J]. International Journal of Impact Engineering, 1992, 12(1): 101–121. DOI: 10.1016/0734-743X(92)90359-2. [40] TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads [J]. International Journal of Impact Engineering, 1991, 11(1): 77–91. DOI: 10.1016/0734-743X(91)90032-B. [41] OLSON M D, NURICK G N, FAGNAN J R. Deformation and rupture of blast loaded square plates—predictions and experiments [J]. International Journal of Impact Engineering, 1993, 13(2): 279–291. DOI: 10.1016/0734-743X(93)90097-Q. [42] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—An experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2. [43] NURICK G N, GELMAN M E, MARSHALL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7): 803–827. DOI: 10.1016/S0734-743X(96)00026-7. [44] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review. Part II: experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8. [45] CLOETE T J, NURICK G N, PALMER R N. The deformation and shear failure of peripherally clamped centrally supported blast loaded circular plates [J]. International Journal of Impact Engineering, 2005, 32(1): 92–117. DOI: 10.1016/j.ijimpeng.2005.06.002. [46] JACOB N, CHUNG KIM YUEN S, NURICK G N, et al. Scaling aspects of quadrangular plates subjected to localised blast loads—experiments and predictions [J]. International Journal of Impact Engineering, 2004, 30(8): 1179–1208. DOI: 10.1016/j.ijimpeng.2004.03.012. [47] LANGDON G S, CHUNG KIM YUEN S, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part II: localised blast loading [J]. International Journal of Impact Engineering, 2005, 31(1): 85–111. DOI: 10.1016/j.ijimpeng.2003.09.050. [48] BONORCHIS D, NURICK G N. The effect of welded boundaries on the response of rectangular hot-rolled mild steel plates subjected to localised blast loading [J]. International Journal of Impact Engineering, 2007, 34(11): 1729–1738. DOI: 10.1016/j.ijimpeng.2006.11.002. [49] WIERZBICKI T, NURICK G N. Large deformation of thin plates under localised impulsive loading [J]. International Journal of Impact Engineering, 1996, 18(7): 899–918. DOI: 10.1016/S0734-743X(96)00027-9. [50] WIERZBICKI T. Petalling of plates under explosive and impact loading [J]. International Journal of Impact Engineering, 1999, 22(9): 935–954. DOI: 10.1016/S0734-743X(99)00028-7. [51] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structures, 2007, 29(10): 2723–2736. DOI: 10.1016/j.engstruct.2007.01.021. [52] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08. [53] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. DOI: 10.1016/s0734-743x(00)00051-8. [54] 朱锡, 冯刚, 张振华. 爆炸载荷作用下固支方板的应变场及破坏分析 [J]. 船舶力学, 2005, 9(2): 83–89. DOI: 10.3969/j.issn.1007-7294.2005.02.013.ZHU X, FENG G, ZHANG Z H. Strain field and damage analysis of clamped square plates subjected to explosive loading [J]. Journal of Ship Mechanics, 2005, 9(2): 83–89. DOI: 10.3969/j.issn.1007-7294.2005.02.013. [55] MICALLEFF K, FALLAH A S, POPE D J, et al. The dynamic performance of simply-supported rigid-plastic circular steel plates subjected to localised blast loading [J]. International Journal of Mechanical Sciences, 2012, 65(1): 177–191. DOI: 10.1016/j.ijmecsci.2012.10.001. [56] GUPTA N K, NAGESH. Deformation and tearing of circular plates with varying support conditions under uniform impulsive loads [J]. International Journal of Impact Engineering, 2007, 34(1): 42–59. DOI: 10.1016/j.ijimpeng.2006.05.002. [57] BONORCHIS D, NURICK G N. The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading—Importance in numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 40–52. DOI: 10.1016/j.ijimpeng.2008.03.003. [58] SCHLEYER G K, HSU S S, WHITE M D, et al. Pulse pressure loading of clamped mild steel plates [J]. International Journal of Impact Engineering, 2003, 28(2): 223–247. DOI: 10.1016/S0734-743X(02)00042-8. [59] 穆朝民, 任辉启, 李永池, 等. 爆室内爆炸流场演化与壳体动力响应研究 [J]. 振动与冲击, 2009, 28(10): 106–111. DOI: 10.3969/j.issn.1000-3835.2009.10.021.MU C M, REN H Q, LI Y C, et al. Blast flow field evolution and dynamic response of a blast chamber [J]. Journal of Vibration and Shock, 2009, 28(10): 106–111. DOI: 10.3969/j.issn.1000-3835.2009.10.021. [60] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002. [61] 朱锡, 牟金磊, 王恒, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07.ZHU X, MOU J L, WANG H, et al. Damage modes of stiffened plates subjected to underwater explosion load [J]. Explosion and Shock Waves, 2010, 30(3): 225–231. DOI: 10.11883/1001-1455(2010)03-0225-07. [62] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板的毁伤模式 [J]. 爆炸与冲击, 2009, 29(5): 457–462. DOI: 10.11883/1001-1455(2009)05-0457-06.MOU J L, ZHU X, ZHANG Z H, et al. Failure modes of stiffened plates subjected to underwater explosion [J]. Explosion and Shock Waves, 2009, 29(5): 457–462. DOI: 10.11883/1001-1455(2009)05-0457-06. [63] 刘润泉, 白雪飞, 朱锡. 舰船单元结构模型水下接触爆炸破口试验研究 [J]. 海军工程大学学报, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011.LIU R Q, BAI X F, ZHU X. Breach experiment research of vessel element structure models subjected to underwater contact explosion [J]. Journal of Naval University of Engineering, 2001, 13(5): 41–46. DOI: 10.3969/j.issn.1009-3486.2001.05.011. [64] GUPTA N K, KUMAR P, HEGDE S. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion—a numerical study [J]. International Journal of Mechanical Sciences, 2010, 52(5): 733–744. DOI: 10.1016/j.ijmecsci.2010.01.005. [65] BONORCHIS D, NURICK G N. The analysis and simulation of welded stiffener plates subjected to localised blast loading [J]. International Journal of Impact Engineering, 2010, 37(3): 260–273. DOI: 10.1016/j.ijimpeng.2009.08.004. [66] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load [J]. International Journal of Impact Engineering, 2005, 31(1): 55–83. DOI: 10.1016/j.ijimpeng.2003.09.048. [67] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y. [68] 黄震球. 固支加筋方板的大挠度塑性动力响应 [J]. 固体力学学报, 1995, 16(1): 7–12. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1995.01.002.HUANG Z Q. Large deflection dynamic plastic response of clamped square plates with stiffeners [J]. Acta Mechanica Solida Sinica, 1995, 16(1): 7–12. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1995.01.002. [69] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08. [70] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计 [J]. 爆炸与冲击, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08.HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load [J]. Explosion and Shock Waves, 2007, 27(1): 26–33. DOI: 10.11883/1001-1455(2007)01-0026-08. [71] 李帆. 舰船舱室内爆炸破坏的数值模拟和实验研究[D]. 长沙: 国防科学技术大学, 2012. [72] 郭志昆, 宋锋良, 刘峰, 等. 扁平箱形密闭结构内爆炸的模型试验 [J]. 解放军理工大学学报(自然科学版), 2008, 9(4): 345–350. DOI: 10.3969/j.issn.1009-3443.2008.04.008.GUO Z K, SONG F L, LIU F, et al. Experiment of closed flat box structure subjected to internal detonation [J]. Journal of PLA University of Science and Technology, 2008, 9(4): 345–350. DOI: 10.3969/j.issn.1009-3443.2008.04.008. [73] YAO S J, ZHANG D, LU F Y, et al. Experimental and numerical studies on the failure modes of steel cabin structure subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 110: 279–287. DOI: 10.1016/j.ijimpeng.2017.03.006. [74] ZHANG D, YAO S J, LU F Y, et al. Dynamic response and damage analysis of steel box wall under internal blast loading [J]. Advances in Mechanical Engineering, 2019, 11(1): 168781401882260. DOI: 10.1177/1687814018822601. [75] 姚术健. 箱形结构内部爆炸等效缩比实验方法及破坏特性研究[D]. 长沙: 国防科学技术大学, 2016. [76] KURKIT M. Contained explosion inside a naval vessel: evaluation of the structural response [D]. Espoo: Helsinki University of Technology, 2007. [77] 孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.KONG X S, WU W G, LI J, et al. Experimental research of influence of corner structure on blast loading under inner explosion [J]. Shipbuilding of China, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007. [78] 孔祥韶, 吴卫国, 李晓彬, 等. 舰船舱室内部爆炸的数值模拟研究 [J]. 中国舰船研究, 2009, 4(4): 7–11. DOI: 10.3969/j.issn.1673-3185.2009.04.002.KONG X S, WU W G, LI X B, et al. Numerical simulation of cabin structure under inner explosion [J]. Chinese Journal of Ship Research, 2009, 4(4): 7–11. DOI: 10.3969/j.issn.1673-3185.2009.04.002. [79] KONG X S, WU W G, LI J, et al. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings [J]. International Journal of Impact Engineering, 2014, 65: 146–162. DOI: 10.1016/j.ijimpeng.2013.11.009. [80] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉理工大学, 2013. [81] 余俊, 张伦平, 潘建强, 等. 舰船结构舱内爆炸破损范围计算方法研究 [C]// 第十届全国冲击动力学学术会议论文摘要集. 太原: 中国力学学会, 2011: 1-10. [82] YAO S J, ZHANG D, LU F Y. Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading [J]. Archive of Applied Mechanics, 2015, 85(6): 735–744. DOI: 10.1007/s00419-015-0986-7. [83] YAO S J, ZHANG D, LU F Y. Dimensionless number for dynamic response analysis of box-shaped structures under internal blast loading [J]. International Journal of Impact Engineering, 2016, 98: 13–18. DOI: 10.1016/j.ijimpeng.2016.07.005. [84] WANG Z Q, WU J G, BAI C H, et al. Response of box-type structures under internal-blast loading [J]. Transactions of Tianjin University, 2006, 12(S1): 112–116. [85] 龚顺风, 金伟良, 何勇. 内部爆炸荷载作用下钢筋混凝土板的动力响应研究 [J]. 振动工程学报, 2008, 21(5): 516–520. DOI: 10.3969/j.issn.1004-4523.2008.05.016.GONG S F, JIN W L, HE Y. Dynamic response of reinforced concrete slab subjected to internal blast loading [J]. Journal of Vibration Engineering, 2008, 21(5): 516–520. DOI: 10.3969/j.issn.1004-4523.2008.05.016. [86] KRAUTHAMMER T. Shallow-buried RC box-type structures [J]. Journal of Structural Engineering, 1984, 110(3): 637–651. DOI: 10.1061/(ASCE)0733-9445(1984)110:3(637). [87] WANG W T. An internal blast analysis of a steel box member [J]. Canadian Journal of Civil Engineering, 2009, 36(8): 1332–1339. DOI: 10.1139/L08-108. [88] 张舵, 吴克刚, 卢芳云. 建筑物内爆炸波的动压载荷研究 [J]. 采矿技术, 2009, 9(5): 68–72. DOI: 10.3969/j.issn.1671-2900.2009.05.026.ZHANG D, WU K G, LU F Y. Study on dynamic pressure load of explosion wave in building [J]. Mining Technology, 2009, 9(5): 68–72. DOI: 10.3969/j.issn.1671-2900.2009.05.026. [89] 高康华, 金丰年, 王德荣, 等. 建筑物内爆炸荷载研究综述 [J]. 中国工程科学, 2013, 15(5): 59–64. DOI: 10.3969/j.issn.1009-1742.2013.05.010.GAO K H, JIN F N, WANG D R, et al. Review on internal explosion loading of building [J]. Engineering Science, 2013, 15(5): 59–64. DOI: 10.3969/j.issn.1009-1742.2013.05.010. [90] 孙松, 王明洋, 高康华, 等. 大尺度泄爆构件对室内爆燃压力影响的实验研究 [J]. 爆炸与冲击, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211.SUN S, WANG M Y, GAO K H, et al. Experimental study on effect of large-scale explosion venting component on interior deglagration pressure [J]. Explosion and Shock Waves, 2018, 38(2): 359–366. DOI: 10.11883/bzycj-2016-0211. 期刊类型引用(7)
1. 李璐萌,张舵,姚术健,黄诗麒,黄河. 多箱型结构内部爆炸破坏模式分析方法. 北京理工大学学报. 2024(03): 239-250 . 百度学术
2. 王琰,蒋海燕,韩璐,苏健军,杨峰. 爆炸冲击波作用下板架结构响应研究综述. 兵器装备工程学报. 2024(03): 151-160 . 百度学术
3. 罗家元,陈哲伦,李世岳,高聪. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状. 复合材料科学与工程. 2024(10): 150-160 . 百度学术
4. 武海军,成乐乐,陈文戈,黄风雷,田思晨,于超,吴子奇. 典型舰船结构的水下爆炸耦合毁伤研究进展. 北京理工大学学报. 2023(05): 439-459 . 百度学术
5. 党蒲妮,吕锦锋,王斌. 空中爆炸冲击波下结构动响应及其抗冲击波设计研究进展. 应用力学学报. 2023(04): 733-744 . 百度学术
6. 刘中辉,匡志平. 爆炸冲击波在扁平大空间内的传播规律. 同济大学学报(自然科学版). 2023(12): 1900-1909 . 百度学术
7. 李凌峰,韩秀凤,沈飞,贺元吉,周涛. 典型约束环境下HMX基温压炸药内爆释能特性. 火工品. 2022(02): 48-53 . 百度学术
其他类型引用(5)
-