基于“钉床型”飞片的斜波加载技术及应用

宗泽 王刚 方嘉铖 林茜 王永刚

宗泽, 王刚, 方嘉铖, 林茜, 王永刚. 基于“钉床型”飞片的斜波加载技术及应用[J]. 爆炸与冲击, 2021, 41(4): 041405. doi: 10.11883/bzycj-2020-0391
引用本文: 宗泽, 王刚, 方嘉铖, 林茜, 王永刚. 基于“钉床型”飞片的斜波加载技术及应用[J]. 爆炸与冲击, 2021, 41(4): 041405. doi: 10.11883/bzycj-2020-0391
ZONG Ze, WANG Gang, FANG Jiacheng, LIN Xi, WANG Yonggang. Ramp wave loading technique and application using a “bed of nails” flyer system[J]. Explosion And Shock Waves, 2021, 41(4): 041405. doi: 10.11883/bzycj-2020-0391
Citation: ZONG Ze, WANG Gang, FANG Jiacheng, LIN Xi, WANG Yonggang. Ramp wave loading technique and application using a “bed of nails” flyer system[J]. Explosion And Shock Waves, 2021, 41(4): 041405. doi: 10.11883/bzycj-2020-0391

基于“钉床型”飞片的斜波加载技术及应用

doi: 10.11883/bzycj-2020-0391
基金项目: 国家自然科学基金(11972202);科学挑战专题(TZ2018001);冲击波物理与爆轰物理重点实验室稳定支持项目(JCKYS2019212009)
详细信息
    作者简介:

    宗 泽(1995- ),男,硕士研究生,1085802353@qq.com

    通讯作者:

    王永刚(1976- ),男,博士,教授,wangyonggang@nbu.edu.cn

  • 中图分类号: O347.3

Ramp wave loading technique and application using a “bed of nails” flyer system

  • 摘要: 为了实现斜波加载,设计了一种“钉床型”广义波阻抗梯度飞片,即在基座上密排叠加许多小圆锥,简称“钉床型”飞片。该飞片采用激光选区熔化金属增材制造技术进行制备。利用一级轻气炮加载装置和全光纤激光位移干涉测试系统,开展不同工况下“钉床型”飞片高速击靶压缩实验和层裂实验,重点讨论小圆锥高度和撞击速度对斜波压缩加载波形的影响规律,以及斜波加载对不锈钢靶板层裂特性的影响。实验结果显示:(1)“钉床型”飞片对靶板产生的压缩是逐步的,从自由面速度剖面上观察到压缩波上升前沿时间被显著延长,形成了斜波波阵面,明显不同于冲击压缩的陡峭波阵面;(2)在飞片击靶速度近似恒定条件下,斜波波阵面的上升沿时间、平台速度峰值都明显依赖于“钉床型”飞片上的小圆锥高度,随着小圆锥高度增大,上升沿时间呈线性增大,而平台速度峰值呈线性减小;(3)在“钉床型”飞片的几何尺寸保持不变的条件下,斜波波阵面的上升沿时间随着飞片击靶速度的增大而线性减小,平台速度峰值则线性增大;(4)与冲击加载相比,“钉床型”飞片产生的斜波加载不会对材料的层裂强度产生明显影响,但对材料内部损伤演化速率有一定的影响。
  • 图  1  “钉床型”广义波阻抗梯度飞片几何结构示意图

    Figure  1.  Schematic diagram of the“bed of nails” generalized wave impedance gradient flyer

    图  2  不同时刻靶板内应力波传播云图[27]

    Figure  2.  Stress wave propagation contours in the specimen at different times[27]

    图  3  采用金属增材制造工艺制备完成的三种不同圆锥高度的“钉床型”飞片

    Figure  3.  The“bed of nails” flyers with the different heights of cone produced by additive manufacturing technique

    图  4  轻气炮实验装置示意图

    Figure  4.  Schematic of the gas gun device

    图  5  安装在铝合金弹托上的飞片

    Figure  5.  Flyer fixed on aluminum alloy sabot

    图  6  在不同锥高条件下不锈钢和纯铜靶板的自由面速度时程曲线

    Figure  6.  Free surface velocity profiles of the stainless-steel and copper targets under different heights of the cone

    图  7  自由面速度剖面上的上升沿时间和平台峰值速度随锥高的变化曲线

    Figure  7.  Rising edge time and peak velocity of free surface velocity profiles as a function of the height of the cone

    图  8  不同撞击速度下不锈钢靶板自由面速度时程曲线

    Figure  8.  Free surface velocity profiles of stainless-steel target at different impact velocities

    图  9  上升沿时间和平台速度峰值与撞击速度比值随撞击速度的变化曲线

    Figure  9.  Rising edge time and ratio of peak velocity to impact velocity as a function of impact velocities

    图  10  层裂实验中实测的不锈钢靶板自由面速度时程曲线

    Figure  10.  Free surface velocity profiles measured by DISAR of stainless-steel targets in spallation

    图  11  不同锥高条件下软回收的不锈钢靶板内部损伤分布

    Figure  11.  Damage distribution of recovered stainless-steel targets at different heights of the cone

    图  12  初始损伤不锈钢靶板上损伤的局部放大显微照片

    Figure  12.  Enlarged damage distribution image of the damaged stainless-steel target

    表  1  不锈钢靶层裂实验结果

    Table  1.   Experimental results on spallation of stainless-steel target

    实验编号h1/mm${{\dot u}_1}$/(m·s−2${{\dot u}_2}$/(m·s−2$\Delta u$/(m·s−1${\dot \varepsilon }$/s−1${\sigma _{\rm s}}$/GPa
    10 26.8×1076.63×107122.13.40×1042.15
    20.524.8×1074.97×107122.43.15×1042.16
    31.521.1×1073.16×107123.22.68×1042.17
    下载: 导出CSV
  • [1] 沈强, 王传彬, 张联盟, 等. 为实现准等熵压缩的波阻抗梯度飞片的实验研究 [J]. 物理学报, 2002, 51(8): 1759–1763. DOI: 10.3321/j.issn: 1000-3290.2002.08.019.

    SHEN Q, WANG C B, ZHANG L M, et al. A study on generating quasi-isentropic compression via graded impedance flyer [J]. Acta Physica Sinica, 2002, 51(8): 1759–1763. DOI: 10.3321/j.issn: 1000-3290.2002.08.019.
    [2] LUO B Q, JIN Y S, LI M, et al. Direct calculation of sound speed of materials under ramp wave compression [J]. AIP Advances, 2018, 8(11): 115024. DOI: 10.1063/1.5047479.
    [3] 经福谦, 陆景德, 刘仓理. 斜波发生器的设计准则 [J]. 高压物理学报, 1987, 1(1): 7–12. DOI: 10.11858/gywlxb.1987.01.002.

    JING F Q, LU J D, LIU C L. Design criterion for ramp wave generator [J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 7–12. DOI: 10.11858/gywlxb.1987.01.002.
    [4] HALL C A, ASAY J R, KNUDSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. DOI: 10.1063/1.1394178.
    [5] LEMKE R W, DOLAN D H, DALTON D G, et al. Probing off-Hugoniot states in Ta, Cu, and Al to 1 000 GPa compression with magnetically driven liner implosions [J]. Journal of Applied Physics, 2016, 119(1): 015904. DOI: 10.1063/1.4939675.
    [6] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535.
    [7] EDWARDS J, LORENZ K T, REMINGTON B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state [J]. Physical Review Letters, 2004, 92(7): 075002. DOI: 10.1103/PhysRevLett.92.075002.
    [8] 王峰, 彭晓世, 单连强, 等. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展 [J]. 物理学报, 2014, 63(18): 185202. DOI: 10.7498/aps.63.185202.

    WANG F, PENG X S, SHAN L Q, et al. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility [J]. Acta Physica Sinica, 2014, 63(18): 185202. DOI: 10.7498/aps.63.185202.
    [9] YEP S J, BELOF J L, ORLIKOWSKI D A, et al. Fabrication and application of high impedance graded density impactors in light gas gun experiments [J]. The Review of Scientific Instruments, 2013, 84(10): 103909. DOI: 10.1063/1.4826565.
    [10] LUO G Q, BAI J S, TAN H, et al. Characterizations of Mg-W system graded-density impactors for complex loading experiments [J]. Metallurgical and Materials Transactions A, 2010, 41(9): 2389–2395. DOI: 10.1007/s11661-010-0309-0.
    [11] SMITH R F, EGGERT J H, JEANLOZ R, et al. Ramp compression of diamond to five terapascals [J]. Nature, 2014, 511(7509): 330–333. DOI: 10.1038/nature13526.
    [12] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用 [J]. 力学进展, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.

    SUN C W, ZHAO J H, WANG G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J]. Advances in Mechanics, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.
    [13] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [14] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705.
    [15] ZHANG X P, LUO B Q, WU G, et al. Yield behavior of polystyrene at strain rate 106 s−1 under quasi-isentropic compression [J]. Mechanics of Materials, 2018, 124: 1–6. DOI: 10.1016/j.mechmat.2018.05.003.
    [16] BARKER L M, SCOTT D D. Development of a high-pressure quasi-isentropic plane wave generating capability: SAN84-0432 [R]. Albuquerque: Sandia National Labs, 1984.
    [17] CHHABILDAS L C, KMETYK L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17(1–3): 183–194. DOI: 10.1016/0734-743x(95)99845-i.
    [18] DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. DOI: 10.1063/1.2196110.
    [19] WINTER R E, COTTON M, HARRIS E J, et al. Plate-impact loading of cellular structures formed by selective laser melting [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025021. DOI: 10.1088/0965-0393/22/2/025021.
    [20] WINTER R E, COTTON M, HARRIS E J, et al. A novel graded density impactor [J]. Journal of Physics: Conference Series, 2014, 500(14): 142034. DOI: 10.1088/1742-6596/500/14/142034.
    [21] TAYLOR P, GOFF M, HAZELL P J, et al. Ramp wave generation using graded areal density ceramic flyers and the plate impact technique [J]. Journal of Physics: Conference Series, 2014, 500(14): 142016. DOI: 10.1088/1742-6596/500/14/142016.
    [22] GOFF M, HAZELL P J, APPLEBY-THOMAS G J, et al. Gas gun ramp loading of Kel-F 81 targets using a ceramic graded areal density flyer system [J]. International Journal of Impact Engineering, 2015, 80: 152–161. DOI: 10.1016/j.ijimpeng.2015.02.010.
    [23] 张家莲, 李发亮, 张海军. 选区激光熔化技术制备金属材料研究进展 [J]. 激光与光电子学进展, 2019, 56(10): 35–44. DOI: 10.3788/LOP56.100003.

    ZHANG J L, LI F L, ZHANG H J. Research progress on preparation of metallic materials by selective laser melting [J]. Laser & Optoelectronics Progress, 2019, 56(10): 35–44. DOI: 10.3788/LOP56.100003.
    [24] 王礼立, 胡时胜. 锥杆中应力波传播的放大特性 [J]. 宁波大学学报, 1985, 1(1): 69–78.

    WANG L L, HU S S. The amplification of stress waves propagated in a conical bar [J]. Journal of Ningbo University, 1985, 1(1): 69–78.
    [25] 张方举, 陶俊林, 田常津. 变截面弹丸在分离式Hopkinson压杆中的应用 [J]. 实验力学, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025.

    ZHANG F J, TAO J L, TIAN C J. Application of cone-cylinder projectiles in split Hopkinson pressure bar test [J]. Journal of Experimental Mechanics, 2003, 18(1): 137–140. DOI: 10.3969/j.issn.1001-4888.2003.01.025.
    [26] 陈子博, 谢普初, 刘东升, 等. 基于广义波阻抗梯度飞片的准等熵压缩技术 [J]. 爆炸与冲击, 2019, 39(4): 041406. DOI: 10.11883/bzycj-2018-0407.

    CHEN Z B, XIE P C, LIU D S, et al. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer [J]. Explosion and Shock Waves, 2019, 39(4): 041406. DOI: 10.11883/bzycj-2018-0407.
    [27] WENG J D, TAN H, WANG X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution [J]. Applied Physics Letters, 2006, 89(11): 111101. DOI: 10.1063/1.2335948.
    [28] 沈强, 张联盟, 熊华平, 等. W-Mo-Ti体系波阻抗梯度飞片的制备与准等熵压缩特性 [J]. 科学通报, 2000, 45(8): 878–881. DOI: 10.3321/j.issn:0023-074X.2000.08.018.

    SHEN Q, ZHANG L M, XIONG H P, et al. Preparation and quasi-isentropic compression characteristics of W-Mo-Ti system wave impedance gradient flyer [J]. Chinese Science Bulletin, 2000, 45(8): 878–881. DOI: 10.3321/j.issn:0023-074X.2000.08.018.
    [29] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2003: 90−92. DOI: 10.1007/b97226.
    [30] KANEL G I, RAZORENOV S V, BOGATCH A, et al. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. International Journal of Impact Engineering, 1997, 20(6–10): 467–478. DOI: 10.1016/S0734-743X(97)87435-0.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  635
  • HTML全文浏览量:  284
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-04-14

目录

    /

    返回文章
    返回