金属蜂窝夹层结构抗水下爆炸特性

魏子涵 赵振宇 叶帆 裴轶群 王昕 张钱城 卢天健

魏子涵, 赵振宇, 叶帆, 裴轶群, 王昕, 张钱城, 卢天健. 金属蜂窝夹层结构抗水下爆炸特性[J]. 爆炸与冲击, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392
引用本文: 魏子涵, 赵振宇, 叶帆, 裴轶群, 王昕, 张钱城, 卢天健. 金属蜂窝夹层结构抗水下爆炸特性[J]. 爆炸与冲击, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392
WEI Zihan, ZHAO Zhenyu, YE Fan, PEI Yiqun, WANG Xin, ZHANG Qiancheng, LU Tianjian. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock[J]. Explosion And Shock Waves, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392
Citation: WEI Zihan, ZHAO Zhenyu, YE Fan, PEI Yiqun, WANG Xin, ZHANG Qiancheng, LU Tianjian. Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock[J]. Explosion And Shock Waves, 2021, 41(8): 083104. doi: 10.11883/bzycj-2020-0392

金属蜂窝夹层结构抗水下爆炸特性

doi: 10.11883/bzycj-2020-0392
基金项目: 国家自然科学基金(11972185,12002156,12072250);中国博士后科学基金(2020M671473);特种车辆及其传动系统智能制造国家重点实验室开放基金(GZ2019KF015)
详细信息
    作者简介:

    魏子涵(1996- ),男,硕士,wzh123@stu.xjtu.edu.cn

    通讯作者:

    赵振宇(1986- ),男,博士,sufengxing@foxmail.com

    卢天健(1964- ),男,博士,教授,tjlu@nuaa.edu.cn

  • 中图分类号: O383.1

Resistance of all-metallic honeycomb sandwich structures to underwater explosion shock

  • 摘要: 金属蜂窝夹层结构是一种新型的舰船防护结构,在舰船防护领域具有广阔的应用前景,但目前缺乏对其在实际水下爆炸载荷作用下动态响应的研究。为研究金属蜂窝夹层结构在水下爆炸载荷作用下的动态响应及防护性能,设计并制备了背板加筋蜂窝夹层结构样件以及相应的浮箱,在大型露天水池中进行了水下实爆 实验;通过声固耦合算法对结构响应进行模拟,实验结果与模拟结果吻合良好,随后分析了蜂窝夹层板的变形过程及能量吸收特性,量化了载荷参数(冲击因子)及结构参数(前后面板厚度比和芯体相对密度)对结构动态响应的影响;最后,以蜂窝夹层板的面密度和后面板中心点最大变形的无量纲量为目标函数,使用NSGA-Ⅱ遗传算法对结构进行了多目标优化,得到对应的Pareto前沿。结果表明,随着冲击因子的增大,蜂窝夹层板整体变形显著增大,蜂窝芯体始终是主要的吸能构件,但其吸能占比逐渐降低;随着前后面板厚度比或芯体相对密度的增加,蜂窝夹层结构的最大变形呈现先降低后升高的趋势,同时呈现不同的变形模式,芯体相对密度对结构变形的影响更为显著;对蜂窝夹层结构开展多目标优化可有效降低结构的面密度及最大变形,优化结果可为蜂窝夹层结构的设计选型提供参考。
  • 图  1  水下爆炸实验布置

    Figure  1.  Layout of underwater explosion experimental setup

    图  2  实验样件

    Figure  2.  A sample for underwater explosion experiment

    图  3  蜂窝夹层板及其代表胞元示意图

    Figure  3.  Schematics of a honeycomb sandwich panel and its unit cell

    图  4  四方蜂窝芯体的制备

    Figure  4.  Fabrication of square honeycomb cores

    图  5  浮箱示意图

    Figure  5.  Schematic of the buoyant box

    图  6  有限元模型

    Figure  6.  Finite element simulation model

    图  7  网格收敛性分析

    Figure  7.  Mesh convergence analysis

    图  8  压力测点处冲击波压力时程曲线

    Figure  8.  Shock wave pressure-time curves at the pressure measuring point

    图  9  样件前、后面板中心点变形时程曲线

    Figure  9.  Deformation-time curves at the central points of the front and back faces of the sample

    图  10  水下爆炸载荷作用下样件变形过程模拟结果

    Figure  10.  Simulated deformation process of the sample subjected to underwater explosion

    图  11  样件整体变形

    Figure  11.  Overall deformation of the sample after underwater explosion

    图  12  试样剖面变形模拟结果与实验结果的对比

    Figure  12.  Comparison of simulated and experimental profile deformations of the sample

    图  13  蜂窝夹层板前、后面板中心点的加速度时程曲线

    Figure  13.  Acceleration-time curves at the central points of the front and back faces of the honeycomb sandwich panel

    图  14  蜂窝夹层板及其构成结构的能量吸收曲线

    Figure  14.  Energy absorption curves of the honeycomb sandwich panel and its constituting sub-structures

    图  15  冲击因子对夹层板变形及能量吸收的影响

    Figure  15.  Effect of the impact factor on deformation and energy absorption of sandwich structures

    图  16  不同的冲击因子对应的结构截面变形示意图

    Figure  16.  Cross-sectional morphologies of sandwich structures subjected to underwater explosion for different impact factors

    图  17  前后面板厚度比和芯体相对密度对结构变形的影响

    Figure  17.  Effect of the facesheet thickness ratio and core relative density on deformation of sandwich structures

    图  18  不同前/后板厚度比对应的结构截面变形示意图

    Figure  18.  Cross-sectional morphologies of sandwich structures subjected to underwater explosion for different facesheet thickness ratios

    图  19  不同芯体相对密度对应的结构截面变形示意图

    Figure  19.  Cross-sectional morphologies of sandwich structures subjected to underwater explosion for different core relative densities

    图  20  优化流程图

    Figure  20.  Flow chart of optimization methodology

    图  21  多目标优化问题的Pareto前沿

    Figure  21.  The Pareto fronts for the present multi-objective optimization problem

    图  22  最优解集对应的w1/Hcw2/Hcwc/Hcδmax/a之间的关系

    Figure  22.  Relationships of w1/Hc, w2/Hc and wc/Hc with δmax/a obtained from corresponding optimization solutions

    表  1  304不锈钢的应变率参数[19]

    Table  1.   Strain-rate parameters of 304 stainless steel[19]

    ${\dot \varepsilon _{{\rm{pl}}}}$/s−1K
    11.11
    1021.26
    1031.46
    1041.62
    下载: 导出CSV

    表  2  采样点及其对应的有限元模拟结果

    Table  2.   Sampling points and corresponding numerical results

    采样点编号w1/Hcw2/Hcwc/Hcδmax/a采样点编号w1/Hct2/Hcwc/Hcδmax/a
    10.0250.0450.0380.094310.1090.0410.0630.060
    20.1130.1170.0420.047320.0380.0410.0230.093
    30.0890.0570.0130.093330.0610.1290.0540.053
    40.1010.0210.0400.082340.0330.0930.0250.081
    50.1130.0850.0580.046350.1010.0450.0440.063
    60.1050.0890.0170.076360.1090.0650.0090.096
    70.0970.0610.0320.064370.0490.1130.0340.065
    80.0530.0610.0360.067380.1210.1090.0110.084
    90.0970.1250.0380.050390.0690.0530.0320.069
    100.0810.1010.0170.077400.0170.0890.0250.114
    110.0290.0610.0500.077410.0730.0250.0230.094
    120.0530.0290.0270.094420.0770.0410.0210.084
    130.0410.0810.0480.065430.0890.1330.0300.057
    140.0450.0770.0560.062440.0650.0290.0670.072
    150.1330.0730.0210.070450.0370.0490.0190.096
    160.0530.0170.0460.096460.0850.0970.0420.051
    170.0210.0970.0520.077470.0770.0570.0500.057
    180.0570.0690.0270.070480.0810.1090.0300.059
    190.0730.0850.0460.053490.0290.0490.0610.078
    200.1250.0690.0650.047500.0930.0250.0070.120
    210.1250.1050.0360.068510.0610.0810.0540.055
    220.0690.0930.0650.050520.0570.1050.0360.061
    230.1210.1210.0480.044530.0410.0730.0400.069
    240.0650.1130.0630.051540.0210.1170.0520.074
    250.0170.0170.0110.182550.1290.0210.0150.096
    260.0850.1290.0580.045560.0490.1330.0340.064
    270.0370.1210.0130.093570.0330.0370.0150.116
    280.1170.0370.0670.061580.1170.0330.0190.099
    290.1330.0330.0610.063590.1050.1250.0560.042
    300.0250.1010.0230.089600.1290.0530.0440.058
    下载: 导出CSV

    表  3  优化结果与模拟结果的对比

    Table  3.   Comparison between optimization solutions and numerical results

    采样点编号
    w1/Hc
    w2/Hc
    wc/Hc
    ${ {\bar M} / {(\rho {H_{\rm{c} } })} }$
    δmax/a
    优化模拟误差/%
    10.0170.0170.0070.0430.1970.195 1.02
    20.1330.1330.0670.3590.0370.038−2.70
    30.0390.0410.0230.1150.0920.094−2.17
    40.0580.0630.0310.1670.0680.067 1.47
    下载: 导出CSV
  • [1] 陈永念. 舰船水下爆炸数值仿真及抗爆结构研究[D]. 上海: 上海交通大学, 2008: 1−2.
    [2] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates [J]. International Journal of Impact Engineering, 1995, 16(2): 273–291. DOI: 10.1016/0734-743X(94)00046-Y.
    [3] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.

    ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Shipbuilding of China, 2003, 44(1): 46–52. DOI: 10.3969/j.issn.1000-4882.2003.01.007.
    [4] 梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析 [J]. 爆炸与冲击, 2004, 24(1): 80–84.

    MEI Z Y, ZHU X, LIU R Q. Dynamic response researches of ship’s stiffened plate structure under explosive load [J]. Explosion and Shock Waves, 2004, 24(1): 80–84.
    [5] JEN C Y, TAI Y S. Deformation behavior of a stiffened panel subjected to underwater shock loading using the non-linear finite element method [J]. Materials and Design, 2010, 31(1): 325–335. DOI: 10.1016/j.matdes.2009.06.011.
    [6] GUPTA N K, KUMAR P, HEGDE S. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion: a numerical study [J]. International Journal of Mechanical Sciences, 2010, 52(5): 733–744. DOI: 10.1016/j.ijmecsci.2010.01.005.
    [7] 方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应 [J]. 哈尔滨工程大学学报, 2008, 29(4): 326–331. DOI: 10.3969/j.issn.1006-7043.2008.04.002.

    FANG B, ZHU X, ZHANG Z H. Plastic dynamic response of ship hull grillage to underwater blast loading [J]. Journal of Harbin Engineering University, 2008, 29(4): 326–331. DOI: 10.3969/j.issn.1006-7043.2008.04.002.
    [8] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板变形及开裂试验研究 [J]. 振动与冲击, 2008, 27(1): 57–60. DOI: 10.3969/j.issn.1000-3835.2008.01.013.

    MU J L, ZHU X, ZHANG Z H, et al. Experimental study on deformation and rupture of stiffened plates subjected to underwater shock [J]. Journal of Vibration and Shock, 2008, 27(1): 57–60. DOI: 10.3969/j.issn.1000-3835.2008.01.013.
    [9] KEIL A H. The response of ships to underwater explosions [R]. Washington: David Taylor Model Basin, 1961.
    [10] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
    [11] 张延昌, 顾金兰, 王自力. 蜂窝式夹层板结构单元的防护性能分析 [J]. 舰船科学技术, 2008, 30(6): 108–113. DOI: 10.3404/j.issn.1672-7649.2008.06.022.

    ZHANG Y C, GU J L, WANG Z L. Research on the anti-shock capacity of square honeycomb sandwich plane [J]. Ship Science and Technology, 2008, 30(6): 108–113. DOI: 10.3404/j.issn.1672-7649.2008.06.022.
    [12] 王自力, 张延昌, 顾金兰. 基于夹层板抗水下爆炸舰船底部结构设计 [J]. 舰船科学技术, 2010, 32(1): 22–27. DOI: 10.3404/j.issn.1672-7649.2010.01.002.

    WANG Z L, ZHANG Y C, GU J L. Anti-shock double bottom structure design of warship based on sandwich panel [J]. Ship Science and Technology, 2010, 32(1): 22–27. DOI: 10.3404/j.issn.1672-7649.2010.01.002.
    [13] XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. DOI: 10.1016/j.ijimpeng.2003.08.007.
    [14] WADLEY H N G, DHARMASENA K P, QUEHEILLALT D T, et al. Dynamic compression of square honeycomb structures during underwater impulsive loading [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2025–2048. DOI: 10.2140/jomms.2007.2.2025.
    [15] MORI L F, LEE S, XUE Z Y, et al. Deformation and fracture modes of sandwich structures subjected to underwater impulsive loads [J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 1981–2006. DOI: 10.2140/jomms.2007.2.1981.
    [16] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 99−116.
    [17] 陈高杰, 沈晓乐, 王树乐, 等. 基于声固耦合法的环肋壳水下冲击数值仿真试验 [J]. 兵工自动化, 2015, 34(2): 7–10. DOI: 10.7690/bgzdh.2015.02.002.

    CHEN G J, SHEN X L, WANG S L, et al. Numerical simulation test of ring-stiffened hull subjected to underwater shock based on coupled acoustic-structural arithmetic [J]. Ordnance Industry Automation, 2015, 34(2): 7–10. DOI: 10.7690/bgzdh.2015.02.002.
    [18] YU B, HAN B, NI C Y, et al. Dynamic crushing of all-metallic corrugated panels filled with close-celled aluminum foams [J]. Journal of Applied Mechanics, 2015, 82(1): 011006. DOI: 10.1115/1.4028995.
    [19] STOUT M G, FOLLANSBEE P S. Strain rate sensitivity, strain hardening, and yield behavior of 304L stainless steel [J]. Journal of Engineering Materials and Technology, 1986, 108(4): 344–353. DOI: 10.1115/1.3225893.
    [20] 李金河, 赵继波, 谭多望, 等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.

    LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.
    [21] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD0757183 [R]. Washington: Naval Intelligence Support Center Washington DC Translation DIV, 1973.
    [22] O’HARA G J, CUNNIFF P F. Scaling for shock response of equipment in different submarines [J]. Shock and Vibration, 1993, 1(2): 161–170. DOI: 10.3233/SAV-1993-1207.
    [23] 张延昌, 周红, 王果, 等. U型折叠式夹层板防护性能数值仿真分析 [J]. 船舶力学, 2013, 17(10): 1191–1201. DOI: 10.3969/j.issn.1007-7294.2013.10.013.

    ZHANG Y C, ZHOU H, WANG G, et al. Numerical simulation analysis on protective performance of U-type corrugated cores sandwich panel [J]. Journal of Ship Mechanics, 2013, 17(10): 1191–1201. DOI: 10.3969/j.issn.1007-7294.2013.10.013.
    [24] 孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究 [J]. 爆炸与冲击, 2020, 40(9): 66–76. DOI: 10.11883/bzycj-2020-0011.

    SUN X W, TAO X X, WANG X H, et al. Research on explosion-proof characteristics and optimization design of negative Poisson’s ratio honeycomb material [J]. Explosion and Shock Waves, 2020, 40(9): 66–76. DOI: 10.11883/bzycj-2020-0011.
    [25] YANG M, HAN B, SU P B, et al. Axial crushing of ultralight all-metallic truncated conical sandwich shells with corrugated cores [J]. Thin-Walled Structures, 2019, 140: 318–330. DOI: 10.1016/j.tws.2019.03.048.
    [26] 吕小青, 王旭, 徐连勇, 等. 基于径向基函数神经网络和NSGA-Ⅱ的气保焊工艺多目标优化 [J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1013–1018. DOI: 10.11784/tdxbz201909067.

    LÜ X Q, WANG X, XU L Y, et al. Multi-objective optimization of gas metal arc welding process parameters based on radial based function neural network and NSGA-Ⅱ [J]. Journal of Tianjin University (Science and Technology), 2020, 53(10): 1013–1018. DOI: 10.11784/tdxbz201909067.
    [27] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. DOI: 10.1109/4235.996017.
    [28] WANG X, LI X, YUE Z S, et al. Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness [J]. Composite Structures, 2021, 256: 112994. DOI: 10.1016/j.compstruct.2020.112994.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  628
  • HTML全文浏览量:  350
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回