基于激波管评价的单兵头面部装备冲击波防护性能研究

康越 张仕忠 张远平 柳占立 黄献聪 马天

康越, 张仕忠, 张远平, 柳占立, 黄献聪, 马天. 基于激波管评价的单兵头面部装备冲击波防护性能研究[J]. 爆炸与冲击, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395
引用本文: 康越, 张仕忠, 张远平, 柳占立, 黄献聪, 马天. 基于激波管评价的单兵头面部装备冲击波防护性能研究[J]. 爆炸与冲击, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395
KANG Yue, ZHANG Shizhong, ZHANG Yuanping, LIU Zhanli, HUANG Xiancong, MA Tian. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation[J]. Explosion And Shock Waves, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395
Citation: KANG Yue, ZHANG Shizhong, ZHANG Yuanping, LIU Zhanli, HUANG Xiancong, MA Tian. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation[J]. Explosion And Shock Waves, 2021, 41(8): 085901. doi: 10.11883/bzycj-2020-0395

基于激波管评价的单兵头面部装备冲击波防护性能研究

doi: 10.11883/bzycj-2020-0395
详细信息
    作者简介:

    康 越(1989- ),男,博士研究生,工程师,goodluckky@163.com

    通讯作者:

    马 天(1975- ),男,博士,正高级高级工程师,wangxhbjfu@163.com

  • 中图分类号: O389

Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation

  • 摘要: 为了优化单兵头面部防护装备结构,提升防护性能,首先开展了基于实爆场和激波管环境的裸头模抗爆炸冲击波对比测试。在此基础上,利用激波管对佩戴不同结构、不同防护等级的头盔-头模系统分别进行了正向及侧向爆炸冲击波防护性能测试,并对头盔-头模系统前部、前额部、顶部、后部、耳部以及眼部等重点区域的冲击波超压峰值和持续作用时间进行对比分析。实验结果表明,基于激波管的抗爆炸冲击波测试方法可替代外场实爆进行考核。受到冲击波正向作用时:两半盔头模顶部测点所测冲击波超压峰值约为喷管出口的 1/6,是裸头模和一体盔头模的 1/3;冲击波在两半盔顶部分体结构处分流卸压并形成叠加反射,导致作用时间延长(从 5.5~8.5 ms),但超压峰值降低明显;对后部测点而言,冲击波的绕行和叠加使一体盔头模所测冲击波超压峰值(365 kPa)略高于两半盔头模(303 kPa),约为裸头模(148 kPa)的 2.5 倍。通过提高单兵头面部防护装备结构密闭性(如佩戴眼镜、耳罩或者防护面罩),可有效阻止冲击波进入头盔-头模系统内部,减弱叠加汇聚效应,提高单兵头面部装备防护性能。
  • 图  1  测试装置示意图

    Figure  1.  Schematic diagrams for the test devices

    图  2  实爆现场示意图及爆炸波形

    Figure  2.  Schematic diagram for the far-field blast environment and explosion waveforms

    图  3  激波管测试得到的超压时程曲线

    Figure  3.  Overpressure-time curves obtained in the shock tube experiments

    图  4  头部模型在激波管中的位置照片

    Figure  4.  Photos showing the head model positions in the shock tube

    图  5  实爆自由场和激波管喷管出口爆炸超压的演化

    Figure  5.  Overpressure changes in the blast free field and at the outlet of the shock tube nozzle

    图  6  实爆场和激波管测试环境下裸头模上不同测点位置的超压时程曲线

    Figure  6.  Overpressure-time curves at different measured points in the bare head in the far-field blast and shock tube environments, respectively

    图  7  喷管出口的超压时程曲线

    Figure  7.  Overpressure-time curves at the nozzle outlet

    图  8  裸头模、两半盔头模和一体盔头模各部位正向实验结果

    Figure  8.  Forward experimental results of different parts for the bare head, two-half-helmet head and integral-helmet head models

    图  9  裸头模、两半盔头模和一体盔头模正向测试超压峰值结果统计

    Figure  9.  Forward experimental overpressure peak for different parts of the bare head, two-half-helmet head and integral-helmet head models

    图  10  裸头模、两半盔头模和一体盔头模系统的眼部和耳部正向测试实验结果

    Figure  10.  Forward experimental results for the eye and ear of the bare head, two-half-helmet head and integral-helmet head models

    图  11  喷管出口的超压时程曲线

    Figure  11.  Overpressure-time curves at the nozzle outlet

    图  12  裸头模、两半盔头模和一体盔头模各部位侧向实验结果

    Figure  12.  Lateral experimental results for different parts of the bare head, two-half-helmet head and integral-helmet head models

    图  13  裸头模、两半盔头模和一体盔头模侧向超压峰值

    Figure  13.  Lateral overpressure peaks for the bare head, two-half-helmet head and integral-helmet head models

    图  14  全防护状态示意图及喷管出口冲击波超压时程曲线

    Figure  14.  Schematic diagram of the full-protection head model and overpressure-time curves at the nozzle outlet

    图  15  受到正向冲击时,两半盔头模和全防护头模各部位实验结果。

    Figure  15.  Forward experimental results for different parts of the two-half-helmet head and full-protection head models

  • [1] 栗志杰, 由小川, 柳占立, 等. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究 [J]. 爆炸与冲击, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.

    LI Z J, YOU X C, LIU Z L, et al. Numerical simulation of the mechanism of traumatic brain injury induced by blast shock waves [J]. Explosion and Shock Waves, 2020, 40(1): 015901. DOI: 10.11883/bzycj-2018-0348.
    [2] TAYLOR G I. The formation of a blast wave by a very intense explosion: I: theoretical discussion [J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 1950, 201(1065): 159–174. DOI: 10.1098/rspa.1950.0049.
    [3] TAYLOR G I. The formation of a blast wave by a very intense explosion: II: the atomic explosion of 1945 [J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 1950, 201(1065): 175–186. DOI: 10.1098/rspa.1950.0050.
    [4] IGRA O, WU X, FALCOVITZ J, et al. Experimental and theoretical study of shock wave propagation through double-bend ducts [J]. Journal of Fluid Mechanics, 2001, 437: 255–282. DOI: 10.1017/S0022112001004098.
    [5] BRODE H L. Blast wave from a spherical charge [J]. The Physics of Fluids, 1959, 2(2): 217–229. DOI: 10.1063/1.1705911.
    [6] HENRYCH J. The dynamics of explosion and its use [J]. Journal of Applied Mechanics, 1980, 47(1): 218. DOI: 10.1115/1.3153619.
    [7] SCOTT T E, KIRKMAN E, HAQUE M, et al. Primary blast lung injury: a review [J]. British Journal of Anaesthesia, 2017, 118(3): 311–316. DOI: 10.1093/bja/aew385.
    [8] LOCKHART P A, CRONIN D S. Helmet liner evaluation to mitigate head response from primary blast exposure [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(6): 635–645. DOI: 10.1080/10255842.2013.829460.
    [9] DEPALMA R G, BURRIS D G, CHAMPION H R, et al. Blast injuries [J]. The New England Journal of Medicine, 2005, 352(13): 1335–1342. DOI: 10.1056/NEJMra042083.
    [10] MOORE D F, RADOVITZKY R A, SHUPENKO L, et al. Blast physics and central nervous system injury [J]. Future Neurology, 2008, 3(3): 243–250. DOI: 10.2217/14796708.3.3.243.
    [11] VERSACE J. A review of the severity index [C]// Proceedings of the 15th Stapp Car Crash Conference. San Diego: Society of Automotive Engineers, 1971: 771−796. DOI: 10.4271/710881.
    [12] SHARMA S, MAKWANA R, ZHANG L Y. Evaluation of blast mitigation capability of advanced combat helmet by finite element modeling [C]// 12th International LS-DYNA® Users Conference. 2012: 1−12.
    [13] ZHANG L Y, MAKWANA R, SHARMA S. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet [J]. Frontiers in Neurology, 2013, 4: 88. DOI: 10.3389/fneur.2013.00088.
    [14] TAN L B, CHEW F S, TSE K M, et al. Impact of complex blast waves on the human head: a computational study [J]. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(12): 1476–1505. DOI: 10.1002/cnm.2668.
    [15] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [16] GRUJICIC M, BELL W C, PANDURANGAN B, et al. Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet [J]. Journal of Materials Engineering and Performance, 2011, 20(6): 877–893. DOI: 10.1007/s11665-010-9724-z.
    [17] EYNDE J O, YU A W, ECKERSLEY C P, et al. Primary blast wave protection in combat helmet design: a historical comparison between present day and World War I [J]. PLoS One, 2020, 15(2): e0228802. DOI: 10.1371/journal.pone.0228802.
    [18] GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. Potential improvement in helmet blast-protection via the use of a polyurea external coating: combined experimental/computational analyses [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(3): 337–367. DOI: 10.1177/1464420716644472.
    [19] SONE J Y, KONDZIOLKA D, HUANG J H, et al. Helmet efficacy against concussion and traumatic brain injury: a review [J]. Journal of Neurosurgery, 2017, 126(3): 768–781. DOI: 10.3171/2016.2.JNS151972.
    [20] BRADFIELD C, VAVALLE N, De VINCENTIS B, et al. Combat helmet suspension system stiffness influences linear head acceleration and white matter tissue strains: implications for future helmet design [J]. Military Medicine, 2018, 183(S1): 276–286. DOI: 10.1093/milmed/usx181.
    [21] RODRÍGUEZ-MILLÁN M, TAN L B, TSE K M, et al. Effect of full helmet systems on human head responses under blast loading [J]. Materials and Design, 2017, 117: 58–71. DOI: 10.1016/j.matdes.2016.12.081.
    [22] TSE K M, TAN L B, SAPINGI M A B, et al. The role of a composite polycarbonate-aerogel face shield in protecting the human brain from blast-induced injury: a fluid-structure interaction (FSI) study [J]. Journal of Sandwich Structures and Materials, 2019, 21(7): 2484–2511. DOI: 10.1177/1099636217733369.
    [23] TAN L B, TSE K M, TAN Y H, et al. Face shield design against blast-induced head injuries [J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(12): e2884. DOI: 10.1002/cnm.2884.
    [24] 韩惠霖. 激波管的发展和应用 [J]. 浙江大学学报, 1980(3): 170–188.

    HAN H L. Development and application of shock tubes [J]. Journal of Chekiang University, 1980(3): 170–188.
    [25] 王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83.

    WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83.
    [26] 王海峰. 脊髓冲击伤动物模型的建立及凋亡相关基因表达的初步研究[D]. 合肥: 安徽医科大学, 2010.
    [27] GANPULE S, GU L, ALAI A, et al. Role of helmet in the mechanics of shock wave propagation under blast loading conditions [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(11): 1233–1244. DOI: 10.1080/10255842.2011.597353.
    [28] COURTNEY E, COURTNEY A, COURTNEY M. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel [J]. Defence Technology, 2014, 10(2): 245–250. DOI: 10.1016/j.dt.2014.04.003.
    [29] LI J T, MA T, HUANG C, et al. Protective mechanism of helmet under far-field shock wave [J]. International Journal of Impact Engineering, 2020, 143: 103617. DOI: 10.1016/j.ijimpeng.2020.103617.
    [30] 杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合 [J]. 爆破器材, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.003.

    YANG Y D, LI X D, WANG X M. Optimum fitting for characteristic parameters of blast shockwaves traveling in air [J]. Explosive Materials, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.003.
    [31] SKOTAK M, ALAY E, ZHENG J Q. Effective testing of personal protective equipment in blast loading conditions in shock tube: comparison of three different testing locations [J]. PLoS One, 2018, 13(6): e0198968. DOI: 10.1371/journal.pone.0198968.
    [32] MAACH S, ROSEN B, MCCAULEY L, et al. Comparison of Hybrid III head response to shock tube and explosive blast loading [C]// International Research Conference on Biomechanics of Injury (IRCOBI). Antwerp: IRCOBI, 2017: 274−283.
  • 加载中
图(15)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  558
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2021-01-13
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回