A damage assessment method for masonry structures subjected to long duration blast loading
-
摘要: 随着百千吨级当量爆炸工业事故的频繁发生,建筑结构的损伤评估和抗爆安全性更受到关注。目前,构件级的评估方法相对成熟,而大当量冲击波作用下的建筑结构整体毁伤评估依旧是个开放性问题。本文中,面向结构级的毁伤评估,提出了一种新的评估方法−构件损伤加权。该方法以承重构件损伤程度为基础,通过基于应变能的构件权系数加权,进而评估结构级损伤破坏程度。为了验证评估方法的有效性,以典型砌体结构为例,利用自主研发的冲击波结构毁伤模拟有限元程序,开展了百毫秒脉宽爆炸冲击波荷载下结构动力学响应数值模拟。根据数值模拟结果,结合构件损伤加权的评估方法,获取砌体结构损伤等级与冲击波超压的关系。预测的超压值的相对误差为−16.9%~26.2%,验证了评估方法的有效性。该评估方法为获取砌体结构的超压-冲量曲线提供了可行的途径,可为结构的抗爆安全设计提供参考。Abstract: With frequent blast accidents of hundreds of tons equivalent explosion, increasing attention has been paid to the damage assessment and anti-explosion safety of building structures. Some evaluation methods give procedures to obtain the pressure-impulse diagrams on the structural components. However, to the best knowledge of authors, how to evaluate the damage degree of building structures as a whole still remains open. In this paper, a weighted component damage method is proposed to evaluate the damage of structures subjected to long duration blast loading. The method, as its name suggests, is to define a damage degree of the whole structure by adding the damage degrees of all components in a weighted manner. The weight of a component, which represents its contribution to the anti-explosion safety, is defined by a strain energy based method. In order to verify the effectiveness of the proposed method, a high-resolution numerical simulation has been performed on a two-story masonry structure subjected to blast loading with a positive phase duration of 100 ms using a self-developed parallel finite element program for shock wave structure destruction simulation. A support rotation criterion based on the flexural deformation model of components is adopted to determine the damage degree of load-bearing components such as brick walls, columns and floors. The damage degree of the whole structure is then obtained using the proposed weighted component damage method. Upon the overpressure-damage curve is obtained, interpolations was carried out to obtain the threshold values of the overpressure corresponding to the six predefined damage levels. The numerical predicted overpressure values were compared with those from literature data. It was shown that the relative error of the overpressure is between −16.9% and 26.2%, and the effectiveness of the proposed method was verified. The proposed assessment approach can be used to obtain the pressure-impulse diagrams of masonry structures and provide effective measures in protecting structures against blast loads.
-
Key words:
- long duration blast loading /
- damage assessment method /
- masonry structure /
- overpressure
-
表 1 柱、砖墙、楼板的权系数
Table 1. The weight values of columns, brick walls and floors
构件 权系数/% 构件 权系数/% 构件 权系数/% 构件 权系数/% 柱1-(0.2,0.2,1.5) 4.21 柱10-(0.2,0.2,4.5) 1.63 墙1-(1.7,0.12,1.5) 2.08 墙9-(1.7,0.12,4.5) 1.62 柱2-(3.2,0.2,1.5) 4.26 柱11-(3.2,0.2,4.5) 1.77 墙2-(4.7,0.12,1.5) 2.07 墙10-(4.7,0.12,4.5) 1.65 柱3-(6.2,0.2,1.5) 4.08 柱12-(6.2,0.2,4.5) 1.60 墙3-(0.12,1.7,1.5) 2.21 墙11-(0.12,1.7,4.5) 1.74 柱4-(0.2,3.2,1.5) 4.26 柱13-(0.2,3.2,4.5) 1.73 墙4-(6.28,1.7,1.5) 2.24 墙12-(6.28,1.7,4.5) 1.76 柱5-(3.2,3.2,1.5) 6.40 柱14-(3.2,3.2,4.5) 2.13 墙5-(0.12,4.7,1.5) 2.07 墙13-(0.12,4.7,4.5) 1.75 柱6-(6.2,3.2,1.5) 4.24 柱15-(6.2,3.2,4.5) 1.74 墙6-(6.28,4.7,1.5) 2.14 墙14-(6.28,4.7,4.5) 1.69 柱7-(0.2,6.2,1.5) 4.21 柱16-(0.2,6.2,4.5) 1.53 墙7-(1.7,6.28,1.5) 2.06 墙15-(1.7,6.28,4.5) 1.76 柱8-(3.2,6.2,1.5) 4.17 柱17-(3.2,6.2,4.5) 1.70 墙8-(4.7,6.28,1.5) 2.10 墙16-(4.7,6.28,4.5) 1.71 柱9-(6.2,6.2,1.5) 4.11 柱18-(6.2,6.2,4.5) 1.50 板1-(1.7,1.7,2.9) 1.76 板3-(1.7,4.7,2.9) 1.74 板5-(1.7,1.7,5.9) 1.76 板7-(1.7,4.7,5.9) 1.79 板2-(4.7,1.7,2.9) 1.78 板4-(4.7,4.7,2.9) 1.76 板6-(4.7,1.7,5.9) 1.75 板8-(4.7,4.7,5.9) 1.81 表 2 超压峰值80 kPa下柱、砖墙、楼板的损伤程度
Table 2. The damage degree values of columns, brick walls and floors under the overpressure peak of 80 kPa
构件 损伤程度 构件 损伤程度 构件 损伤程度 构件 损伤程度 柱1-(0.2,0.2,1.5) 2.500 柱10-(0.2,0.2,4.5) 0.005 墙1-(1.7,0.12,1.5) 2.750 墙9-(1.7,0.12,4.5) 0.688 柱2-(3.2,0.2,1.5) 2.500 柱11-(3.2,0.2,4.5) 0.550 墙2-(4.7,0.12,1.5) 2.460 墙10-(4.7,0.12,4.5) 0.755 柱3-(6.2,0.2,1.5) 2.500 柱12-(6.2,0.2,4.5) 0.012 墙3-(0.12,1.7,1.5) 1.070 墙11-(0.12,1.7,4.5) 0.178 柱4-(0.2,3.2,1.5) 2.500 柱13-(0.2,3.2,4.5) 0.056 墙4-(6.28,1.7,1.5) 0.930 墙12-(6.28,1.7,4.5) 0.172 柱5-(3.2,3.2,1.5) 2.500 柱14-(3.2,3.2,4.5) 0.153 墙5-(0.12,4.7,1.5) 0.388 墙13-(0.12,4.7,4.5) 0.100 柱6-(6.2,3.2,1.5) 2.500 柱15-(6.2,3.2,4.5) 0.063 墙6-(6.28,4.7,1.5) 0.364 墙14-(6.28,4.7,4.5) 0.112 柱7-(0.2,6.2,1.5) 2.500 柱16-(0.2,6.2,4.5) 0.007 墙7-(1.7,6.28,1.5) 2.570 墙15-(1.7,6.28,4.5) 0.175 柱8-(3.2,6.2,1.5) 1.310 柱17-(3.2,6.2,4.5) 0.112 墙8-(4.7,6.28,1.5) 2.190 墙16-(4.7,6.28,4.5) 0.176 柱9-(6.2,6.2,1.5) 2.470 柱18-(6.2,6.2,4.5) 0.013 板1-(1.7,1.7,2.9) 0.084 板3-(1.7,4.7,2.9) 0.084 板5-(1.7,1.7,5.9) 0.622 板7-(1.7,4.7,5.9) 0.290 板2-(4.7,1.7,2.9) 0.086 板4-(4.7,4.7,2.9) 0.087 板6-(4.7,1.7,5.9) 0.585 板8-(4.7,4.7,5.9) 0.281 表 3 砌体结构损伤程度和空气冲击波超压值
Table 3. The damage degrees of the masonry structure and the overpressure values of the air shock wave
-
[1] WESEVICH J W, OSWALD C J. Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage [M]. New York: American Society of Civil Engineers, 2005: 207−218. DOI: 10.1061/40753(171)207. [2] MA G W, SHI H J, SHU D W. p-I diagram method for combined failure modes of rigid-plastic beams [J]. International Journal of Impact Engineering, 2007, 34(6): 1081–1094. DOI: 10.1016/j.ijimpeng.2006.05.001. [3] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001. [4] 陆新征. 工程地震灾变模拟: 从高层建筑到城市区域[M]. 北京: 科学出版社, 2015: 250−257. [5] 李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992: 299−301. [6] CCPS. Guidelines for evaluating the characteristics of vapor cloud explosions, flash fires, and BLEVEs [M]. New York: Center for Chemical Process Safety of American Institute of Chemical Engineers, 1994. [7] DING Y, SONG X R, ZHU H T. Probabilistic progressive collapse analysis of steel frame structures against blast loads [J]. Engineering Structures, 2017, 147: 679–691. DOI: 10.1016/j.engstruct.2017.05.063. [8] 陶俊林, 李丹, 刘彤, 等. 内爆作用下钢筋混凝土框架结构及承重件的毁伤与评估[M]. 北京: 科学出版社, 2017: 142−143. [9] US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington, USA: Department of Defense, 2008. [10] ASCE. Blast protection of buildings [M]. American Society of Civil Engineers, 2011: 7−8. DOI: 10.1061/9780784411889. [11] 田荣. 爆炸毁伤效应评估 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018. [12] 曾繁, 刘娜. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018. [13] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5. [14] LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z. [15] KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125. [16] ANTHOINE A. Derivation of the in-plane elastic characteristics of masonry through homogenization theory [J]. International Journal of Solids and Structures, 1995, 32(2): 137–163. DOI: 10.1016/0020-7683(94)00140-R. [17] WEI X Y, HAO H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effects [J]. International Journal of Impact Engineering, 2009, 36(3): 522–536. DOI: 10.1016/j.ijimpeng.2008.02.005. [18] WU C Q, HAO H. Derivation of 3D masonry properties using numerical homogenization technique [J]. International Journal for Numerical Methods in Engineering, 2006, 66(11): 1717–1737. DOI: 10.1002/nme.1537. [19] ZUCCHINI A, LOURENÇO P B. A micro-mechanical model for the homogenisation of masonry [J]. International Journal of Solids and Structures, 2002, 39(12): 3233–3255. DOI: 10.1016/S0020-7683(02)00230-5. [20] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127. [21] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686. [22] MILLS C A. The design of concrete structures to resist explosions and weapon effects [C] // Proceedings of the 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK, 1987. [23] BRASIE W C, SIMPSON D W. Guidelines for estimating damage explosion [J]. Journal of Loss Prevention in the Process Industries, 1968, 2: 91–101. [24] PERRY R H, GREEN D W, MALONEY J O. Perry’s chemical engineer’s handbook [M]. 7th ed. New York: McGraw-Hill, 1997. [25] CROWL D A. Understanding explosions [M]. New York: Center for Chemical Process Safety of the American Institute of Chemical Engineers, 2003. [26] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985.