砌体结构长脉宽爆炸荷载损伤等级评估方法

曾繁 肖桂仲 冯晓伟 黄超 田荣

曾繁, 肖桂仲, 冯晓伟, 黄超, 田荣. 砌体结构长脉宽爆炸荷载损伤等级评估方法[J]. 爆炸与冲击, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399
引用本文: 曾繁, 肖桂仲, 冯晓伟, 黄超, 田荣. 砌体结构长脉宽爆炸荷载损伤等级评估方法[J]. 爆炸与冲击, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399
ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399
Citation: ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399

砌体结构长脉宽爆炸荷载损伤等级评估方法

doi: 10.11883/bzycj-2020-0399
基金项目: 科学挑战专题(TZ2018002)
详细信息
    作者简介:

    曾 繁(1989- ),男,博士,副研究员,zeng_fan@iapcm.ac.cn

    通讯作者:

    田 荣(1973- ),男,博士,研究员,tian_rong@iapcm.ac.cn

  • 中图分类号: O383

A damage assessment method for masonry structures subjected to long duration blast loading

  • 摘要: 随着百千吨级当量爆炸工业事故的频繁发生,建筑结构的损伤评估和抗爆安全性更受到关注。目前,构件级的评估方法相对成熟,而大当量冲击波作用下的建筑结构整体毁伤评估依旧是个开放性问题。本文中,面向结构级的毁伤评估,提出了一种新的评估方法−构件损伤加权。该方法以承重构件损伤程度为基础,通过基于应变能的构件权系数加权,进而评估结构级损伤破坏程度。为了验证评估方法的有效性,以典型砌体结构为例,利用自主研发的冲击波结构毁伤模拟有限元程序,开展了百毫秒脉宽爆炸冲击波荷载下结构动力学响应数值模拟。根据数值模拟结果,结合构件损伤加权的评估方法,获取砌体结构损伤等级与冲击波超压的关系。预测的超压值的相对误差为−16.9%~26.2%,验证了评估方法的有效性。该评估方法为获取砌体结构的超压-冲量曲线提供了可行的途径,可为结构的抗爆安全设计提供参考。
  • 图  1  砌体结构的有限元模型

    Figure  1.  Finite element model of a masonry structure

    图  2  超压峰值80 kPa下流场冲击波传输的模拟结果

    Figure  2.  Numerical simulation results of shock wave propagation under the overpressure peak of 80 kPa

    图  3  迎爆面的反射超压峰值

    Figure  3.  The reflected overpressure peaks on the blasting face

    图  4  砌体结构的损伤破坏形态

    Figure  4.  Damage and fracture morphology of the masonry structure

    图  5  柱构件的支座转角曲线

    Figure  5.  Rotation curves of the support of column components

    图  6  砌体结构损伤的评估结果

    Figure  6.  Results of damage assessment of the masonry structure

    表  1  柱、砖墙、楼板的权系数

    Table  1.   The weight values of columns, brick walls and floors

    构件权系数/%构件权系数/%构件权系数/%构件权系数/%
    柱1-(0.2,0.2,1.5)4.21柱10-(0.2,0.2,4.5)1.63墙1-(1.7,0.12,1.5)2.08墙9-(1.7,0.12,4.5)1.62
    柱2-(3.2,0.2,1.5)4.26柱11-(3.2,0.2,4.5)1.77墙2-(4.7,0.12,1.5)2.07墙10-(4.7,0.12,4.5)1.65
    柱3-(6.2,0.2,1.5)4.08柱12-(6.2,0.2,4.5)1.60墙3-(0.12,1.7,1.5)2.21墙11-(0.12,1.7,4.5)1.74
    柱4-(0.2,3.2,1.5)4.26柱13-(0.2,3.2,4.5)1.73墙4-(6.28,1.7,1.5)2.24墙12-(6.28,1.7,4.5)1.76
    柱5-(3.2,3.2,1.5)6.40柱14-(3.2,3.2,4.5)2.13墙5-(0.12,4.7,1.5)2.07墙13-(0.12,4.7,4.5)1.75
    柱6-(6.2,3.2,1.5)4.24柱15-(6.2,3.2,4.5)1.74墙6-(6.28,4.7,1.5)2.14墙14-(6.28,4.7,4.5)1.69
    柱7-(0.2,6.2,1.5)4.21柱16-(0.2,6.2,4.5)1.53墙7-(1.7,6.28,1.5)2.06墙15-(1.7,6.28,4.5)1.76
    柱8-(3.2,6.2,1.5)4.17柱17-(3.2,6.2,4.5)1.70墙8-(4.7,6.28,1.5)2.10墙16-(4.7,6.28,4.5)1.71
    柱9-(6.2,6.2,1.5)4.11柱18-(6.2,6.2,4.5)1.50
    板1-(1.7,1.7,2.9)1.76板3-(1.7,4.7,2.9)1.74板5-(1.7,1.7,5.9)1.76板7-(1.7,4.7,5.9)1.79
    板2-(4.7,1.7,2.9)1.78板4-(4.7,4.7,2.9)1.76板6-(4.7,1.7,5.9)1.75板8-(4.7,4.7,5.9)1.81
    下载: 导出CSV

    表  2  超压峰值80 kPa下柱、砖墙、楼板的损伤程度

    Table  2.   The damage degree values of columns, brick walls and floors under the overpressure peak of 80 kPa

    构件损伤程度构件损伤程度构件损伤程度构件损伤程度
    柱1-(0.2,0.2,1.5)2.500柱10-(0.2,0.2,4.5)0.005墙1-(1.7,0.12,1.5)2.750墙9-(1.7,0.12,4.5)0.688
    柱2-(3.2,0.2,1.5)2.500柱11-(3.2,0.2,4.5)0.550墙2-(4.7,0.12,1.5)2.460墙10-(4.7,0.12,4.5)0.755
    柱3-(6.2,0.2,1.5)2.500柱12-(6.2,0.2,4.5)0.012墙3-(0.12,1.7,1.5)1.070墙11-(0.12,1.7,4.5)0.178
    柱4-(0.2,3.2,1.5)2.500柱13-(0.2,3.2,4.5)0.056墙4-(6.28,1.7,1.5)0.930墙12-(6.28,1.7,4.5)0.172
    柱5-(3.2,3.2,1.5)2.500柱14-(3.2,3.2,4.5)0.153墙5-(0.12,4.7,1.5)0.388墙13-(0.12,4.7,4.5)0.100
    柱6-(6.2,3.2,1.5)2.500柱15-(6.2,3.2,4.5)0.063墙6-(6.28,4.7,1.5)0.364墙14-(6.28,4.7,4.5)0.112
    柱7-(0.2,6.2,1.5)2.500柱16-(0.2,6.2,4.5)0.007墙7-(1.7,6.28,1.5)2.570墙15-(1.7,6.28,4.5)0.175
    柱8-(3.2,6.2,1.5)1.310柱17-(3.2,6.2,4.5)0.112墙8-(4.7,6.28,1.5)2.190墙16-(4.7,6.28,4.5)0.176
    柱9-(6.2,6.2,1.5)2.470柱18-(6.2,6.2,4.5)0.013
    板1-(1.7,1.7,2.9)0.084板3-(1.7,4.7,2.9)0.084板5-(1.7,1.7,5.9)0.622板7-(1.7,4.7,5.9)0.290
    板2-(4.7,1.7,2.9)0.086板4-(4.7,4.7,2.9)0.087板6-(4.7,1.7,5.9)0.585板8-(4.7,4.7,5.9)0.281
    下载: 导出CSV

    表  3  砌体结构损伤程度和空气冲击波超压值

    Table  3.   The damage degrees of the masonry structure and the overpressure values of the air shock wave

    损伤等级砌体结构入射超压pI/kPa相对误差/%
    文献[5]文献[6]数值模拟与文献[5]与文献[6]
    无损伤 <2.00 <2.00 <2.000 0
    极轻度损伤<12.00<17.00<14.1317.75−16.88
    轻度损伤<30.00<34.00<29.80−0.67−12.35
    中度损伤<50.00<69.00<63.0826.16 −8.58
    严重损伤<76.00<82.00<78.30 3.03 −4.51
    倒塌>76.00>82.00>78.30 3.03 −4.51
    下载: 导出CSV
  • [1] WESEVICH J W, OSWALD C J. Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage [M]. New York: American Society of Civil Engineers, 2005: 207−218. DOI: 10.1061/40753(171)207.
    [2] MA G W, SHI H J, SHU D W. p-I diagram method for combined failure modes of rigid-plastic beams [J]. International Journal of Impact Engineering, 2007, 34(6): 1081–1094. DOI: 10.1016/j.ijimpeng.2006.05.001.
    [3] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [4] 陆新征. 工程地震灾变模拟: 从高层建筑到城市区域[M]. 北京: 科学出版社, 2015: 250−257.
    [5] 李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992: 299−301.
    [6] CCPS. Guidelines for evaluating the characteristics of vapor cloud explosions, flash fires, and BLEVEs [M]. New York: Center for Chemical Process Safety of American Institute of Chemical Engineers, 1994.
    [7] DING Y, SONG X R, ZHU H T. Probabilistic progressive collapse analysis of steel frame structures against blast loads [J]. Engineering Structures, 2017, 147: 679–691. DOI: 10.1016/j.engstruct.2017.05.063.
    [8] 陶俊林, 李丹, 刘彤, 等. 内爆作用下钢筋混凝土框架结构及承重件的毁伤与评估[M]. 北京: 科学出版社, 2017: 142−143.
    [9] US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington, USA: Department of Defense, 2008.
    [10] ASCE. Blast protection of buildings [M]. American Society of Civil Engineers, 2011: 7−8. DOI: 10.1061/9780784411889.
    [11] 田荣. 爆炸毁伤效应评估 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
    [12] 曾繁, 刘娜. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
    [13] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5.
    [14] LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z.
    [15] KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
    [16] ANTHOINE A. Derivation of the in-plane elastic characteristics of masonry through homogenization theory [J]. International Journal of Solids and Structures, 1995, 32(2): 137–163. DOI: 10.1016/0020-7683(94)00140-R.
    [17] WEI X Y, HAO H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effects [J]. International Journal of Impact Engineering, 2009, 36(3): 522–536. DOI: 10.1016/j.ijimpeng.2008.02.005.
    [18] WU C Q, HAO H. Derivation of 3D masonry properties using numerical homogenization technique [J]. International Journal for Numerical Methods in Engineering, 2006, 66(11): 1717–1737. DOI: 10.1002/nme.1537.
    [19] ZUCCHINI A, LOURENÇO P B. A micro-mechanical model for the homogenisation of masonry [J]. International Journal of Solids and Structures, 2002, 39(12): 3233–3255. DOI: 10.1016/S0020-7683(02)00230-5.
    [20] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.

    XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127.
    [21] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.

    XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686.
    [22] MILLS C A. The design of concrete structures to resist explosions and weapon effects [C] // Proceedings of the 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK, 1987.
    [23] BRASIE W C, SIMPSON D W. Guidelines for estimating damage explosion [J]. Journal of Loss Prevention in the Process Industries, 1968, 2: 91–101.
    [24] PERRY R H, GREEN D W, MALONEY J O. Perry’s chemical engineer’s handbook [M]. 7th ed. New York: McGraw-Hill, 1997.
    [25] CROWL D A. Understanding explosions [M]. New York: Center for Chemical Process Safety of the American Institute of Chemical Engineers, 2003.
    [26] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  390
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回