[1] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
|
[2] |
CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375: 213–218. DOI: 10.1016/j.msea.2003.10.257.
|
[3] |
张勇, 陈明彪, 杨潇. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2019: 5−6.
|
[4] |
李建国, 黄瑞瑞, 张倩, 等. 高熵合金的力学性能及变形行为研究进展 [J]. 力学学报, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.LI J G, HUANG R R, ZHANG Q, et al. Mechnical properties and behaviors of high entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.
|
[5] |
李甲, 冯慧, 陈阳, 等. 高熵合金强韧化理论建模与模拟研究进展 [J]. 固体力学学报, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.LI J, FENG H, CHEN Y, et al. Progress in theoretical modeling and simulation on strengthening and toughening of high-entropy alloys [J]. Chinese Journal of Solid Mechanics, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.
|
[6] |
吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.LÜ Z P, LEI Z F, HUANG H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metallurgica Sinica, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.
|
[7] |
DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223–227. DOI: 10.1038/s41586-019-1617-1.
|
[8] |
WANG F L, BALBUS G H, XU S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370(6512): 95–101. DOI: 10.1126/science.aba3722.
|
[9] |
ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022.
|
[10] |
SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18(9): 1758–1765. DOI: 10.1016/j.intermet.2010.05.014.
|
[11] |
SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698–706. DOI: 10.1016/j.intermet.2011.01.004.
|
[12] |
CHEN H, KAUFFMANN A, LAUBE S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metallurgical and Materials Transactions A, 2018, 49(3): 772–781. DOI: 10.1007/s11661-017-4386-1.
|
[13] |
刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.LIU Z Q, QIAO J W. Research progress of refractory high-entropy alloys [J]. Materials China, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.
|
[14] |
GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74–78. DOI: 10.1016/j.intermet.2013.03.018.
|
[15] |
GEORGE E P, CURTIN W A, TASAN C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Materialia, 2020, 188: 435–474. DOI: 10.1016/j.actamat.2019.12.015.
|
[16] |
ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013.
|
[17] |
WANG W R, WANG W L, WANG S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44–51. DOI: 10.1016/j.intermet.2012.03.005.
|
[18] |
王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
|
[19] |
黄小霞, 汪冰峰, 刘彬. FeCoNiCrMn高熵合金动态力学性能与微观结构 [J]. 矿冶工程, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.HUANG X X, WANG B F, LIU B. Dynamic mechanical properties and microstructure of FeCoNiCrMn high entropy alloy [J]. Mining and Metallurgical Engineering, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.
|
[20] |
JIANG Z J, HE J Y, WANG H Y, et al. Shock compression response of high entropy alloys [J]. Materials Research Letters, 2016, 4(4): 226–232. DOI: 10.1080/21663831.2016.1191554.
|
[21] |
WANG Z W, BAKER I, CAI Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228–239. DOI: 10.1016/j.actamat.2016.08.072.
|
[22] |
STEPANOV N D, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2017, 693: 394–405. DOI: 10.1016/j.jallcom.2016.09.208.
|
[23] |
FAN J T, ZHANG L J, YU P F, et al. Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition [J]. Materials Science and Engineering: A, 2018, 728: 30–39. DOI: 10.1016/j.msea.2018.05.013.
|
[24] |
XIE Y C, CHENG H, TANG Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Intermetallics, 2018, 93: 228–234. DOI: 10.1016/j.intermet.2017.09.013.
|
[25] |
CHEN Y W, LI Y K, CHENG X W, et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x= 0.05, 0.1, 0.2) high-entropy alloys [J]. Materials Letters, 2018, 228: 145–147. DOI: 10.1016/j.matlet.2018.05.123.
|
[26] |
PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. DOI: 10.1016/j.msea.2018.02.031.
|
[27] |
LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Scientific Reports, 2014, 4: 6200. DOI: 10.1038/srep06200.
|
[28] |
LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981.
|
[29] |
LI Z M, TASAN C C, PRADEEP K G, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior [J]. Acta Materialia, 2017, 131: 323–335. DOI: 10.1016/j.actamat.2017.03.069.
|
[30] |
WANG M M, TASAN C C, PONGE D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance [J]. Acta Materialia, 2015, 85: 216–228. DOI: 10.1016/j.actamat.2014.11.010.
|
[31] |
TASAN C C, DIEHL M, YAN D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design [J]. Annual Review of Materials Research, 2015, 45: 391–431. DOI: 10.1146/annurev-matsci-070214-021103.
|
[32] |
GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041.
|
[33] |
GHASSEMI-ARMAKI H, MAAß R, BHAT S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Materialia, 2014, 62: 197–211. DOI: 10.1016/j.actamat.2013.10.001.
|
[34] |
CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
|
[35] |
CHOI-YIM H, LEE S Y, CONNER R D. Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites [J]. Scripta Materialia, 2008, 58(9): 763–766. DOI: 10.1016/j.scriptamat.2007.12.037.
|
[36] |
CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/S1359-6462(01)01134-4.
|
[37] |
LI H, SUBHASH G, KECSKES L J, et al. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Materials Science and Engineering: A, 2005, 403(1): 134–143. DOI: 10.1016/j.msea.2005.04.053.
|
[38] |
陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
|
[39] |
CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
|
[40] |
李继承, 陈小伟, 黄风雷. 块体金属玻璃压缩变形和破坏特性的有限元模拟研究 [J]. 固体力学学报, 2016, 37(S1): 56–64.LI J C, CHEN X W, HUANG F L. FEM simulation on deformation and failure in bulk metallic glasses under quasistatic compression [J]. Chinese Journal of Solid Mechanics, 2016, 37(S1): 56–64.
|
[41] |
李继承. 金属玻璃及其复合材料的剪切变形与破坏[D]. 北京: 北京理工大学, 2016: 149−188.
|
[42] |
WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5.
|
[43] |
ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
|
[44] |
MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc., 1994: 296-378.
|
[45] |
ARMSTRONG R W, LI Q Z. Dislocation mechanics of high-rate deformations [J]. Metallurgical and Materials Transactions A, 2015, 46(10): 4438–4453. DOI: 10.1007/s11661-015-2779-6.
|
[46] |
DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. DOI: 10.1016/j.matchar.2015.11.018.
|
[47] |
COUQUE H. The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2023): 20130218. DOI: 10.1098/rsta.2013.0218.
|
[48] |
KUMAR N, YING Q, NIE X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials & Design, 2015, 86: 598–602. DOI: 10.1016/j.matdes.2015.07.161.
|
[49] |
GUO W G, NEMAT-NASSER S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials, 2006, 38(11): 1090–1103. DOI: 10.1016/j.mechmat.2006.01.004.
|
[50] |
李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
|
[51] |
林建平, 王立影, 田浩彬, 等. 超高强度钢热流变行为 [J]. 塑性工程学报, 2009, 16(2): 180–183.LIN J P, WANG L Y, TIAN H B, et al. Research on hot forming behavior of ultrahigh strength steel [J]. Journal of Plasticity Engineering, 2009, 16(2): 180–183.
|
[52] |
SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. Journal of Materials Science, 2012, 47(9): 4062–4074. DOI: 10.1007/s10853-012-6260-2.
|
[53] |
JEONG H T, PARK H K, PARK K, et al. High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2019, 756: 528–537. DOI: 10.1016/j.msea.2019.04.057.
|
[54] |
ZHAO Y L, YANG T, LI Y R, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy [J]. Acta Materialia, 2020, 188: 517–527. DOI: 10.1016/j.actamat.2020.02.028.
|
[55] |
李春玲, 马跃, 郝家苗, 等. 难熔高熵合金的研究进展及应用 [J]. 精密成形工程, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.LI C L, MA Y, HAO J M, et al. Research progress and application of refractory high entropy alloys [J]. Journal of Netshape Forming Engineering, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.
|
[56] |
张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究[D]. 长沙: 国防科技大学, 2017: 80−85.ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80−85.
|
[57] |
陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.
|
[58] |
LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening” tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
|
[59] |
CHERECHEŞ T, LIXANDRU P, GEANTĂ V, et al. Layered structures analysis, with high entropy alloys, for ballistic protection [J]. Applied Mechanics and Materials, 2015, 809/810: 724–729. DOI: 10.4028/www.scientific.net/AMM.809-810.724.
|
[60] |
GEANTĂ V, VOICULESCU I, STEFĂNOIU R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conference Series: Materials Science and Engineering, 2018, 374: 012041. DOI: 10.1088/1757-899X/374/1/012041.
|
[61] |
MUSKERI S, CHOUDHURI D, JANNOTTI P A, et al. Ballistic impact response of Al0.1CoCrFeNi high-entropy alloy [J]. Advanced Engineering Materials, 2020, 22(6): 2000124. DOI: 10.1002/adem.202000124.
|