Hopkinson曲杆型双向拉伸加载设计探讨

赵思晗 郭伟国 王凡 李馨馨 陈龙洋 李小龙 王瑞丰

赵思晗, 郭伟国, 王凡, 李馨馨, 陈龙洋, 李小龙, 王瑞丰. Hopkinson曲杆型双向拉伸加载设计探讨[J]. 爆炸与冲击, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427
引用本文: 赵思晗, 郭伟国, 王凡, 李馨馨, 陈龙洋, 李小龙, 王瑞丰. Hopkinson曲杆型双向拉伸加载设计探讨[J]. 爆炸与冲击, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427
ZHAO Sihan, GUO Weiguo, WANG Fan, LI Xinxin, CHEN Longyang, LI Xiaolong, WANG Ruifeng. On a bidirectional bending Hopkinson tension test method[J]. Explosion And Shock Waves, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427
Citation: ZHAO Sihan, GUO Weiguo, WANG Fan, LI Xinxin, CHEN Longyang, LI Xiaolong, WANG Ruifeng. On a bidirectional bending Hopkinson tension test method[J]. Explosion And Shock Waves, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427

Hopkinson曲杆型双向拉伸加载设计探讨

doi: 10.11883/bzycj-2020-0427
基金项目: 国家自然科学基金(11872051,12072287);陕西省大学生创新训练计划(S201910699205)
详细信息
    作者简介:

    赵思晗(1995- ),男,博士研究生,zhaosihan@mail.nwpu.edu.cn

    通讯作者:

    郭伟国(1960- ),男,教授,博士生导师,weiguo@nwpu.edu.cn

  • 中图分类号: O347.3

On a bidirectional bending Hopkinson tension test method

  • 摘要: 为了实现对材料或结构的双向高应变率同步拉伸加载,基于曲杆中弹性应力波传播理论和Hopkinson杆原理,首先在对称的人字形曲杆结构中同时产生和传递两路压缩波,再经过接触转接头反射形成沿拉伸加载杆传播的双向拉伸波,实现对试样的双向动态拉伸。同时,为理解人字形曲杆几何构形对弹性压缩波传播的影响规律,对该加载装置进行了动力学分析和ABAQUS有限元模拟。研究发现,理想方波构形的压缩弹性波经过曲杆传播后,方波的平台段随着杆弯曲角度的增大出现前高后低的倾斜现象,同时大曲率杆引起的波形失真更严重。为获取常规方波或梯形波的平台段,也可采用定量优化的锥形撞击杆,产生前低后高的加载波,来抵消曲杆传递中的倾斜失真。最后,为了验证该加载系统的有效性,搭建了小型人字形曲杆高应变率双向拉伸装置进行试验测试。结果表明,该装置实现了脉宽约为54 μs的双向拉伸加载波良好的同步,两路波形起始点时间差可以控制在约2.5 μs以内,幅值差约6×10−6。同时对2024铝合金试样进行了双向拉伸试验,取得良好的试验效果。
  • 图  1  测试杆示意图

    Figure  1.  Schematic diagram of test bars

    图  2  压缩波在弯曲杆中传播

    Figure  2.  Compression wave propagation in bending bars

    图  3  不同位置处的应变、弯矩、剪切力、轴力时程曲线(l0=40 mm,d=5 mm,R=400 mm,α=90°)

    Figure  3.  Time-history curves of strain, bending moment, shear force and axial force at different positions (l0=40 mm, d=5 mm, R=400 mm, α=90°)

    图  4  R/d对应变波形的影响

    Figure  4.  Strain waveforms for the various values of R/d

    图  5  不同的约束条件(L=200 mm, R=400 mm,l0=80 mm,d=5 mm,α=90º)

    Figure  5.  Different constraint conditions (L=200 mm, R=400 mm, l0=80 mm, d=5 mm, α=90º)

    图  6  不同约束条件下的波形对比(L=200 mm, R=400 mm,l0=80 mm,d=5 mm,α=90º)

    Figure  6.  Strain waveforms in the bar under different constraint conditions (L=200 mm, R=400 mm, l0=80 mm, d=5 mm, α=90º)

    图  7  曲杆型双向动态拉伸装置

    Figure  7.  Bidirectional bending Hopkinson tension bar

    图  8  双向拉伸装置的有限元模拟结果

    Figure  8.  FEA results of bidirectional dynamic tension device

    图  9  双向动态拉伸试验应变波形

    Figure  9.  Strain signal in bidirectional dynamic tension experiment

    图  10  双向拉伸2024铝合金试验结果

    Figure  10.  Bidirectional tension test results of 2024 aluminum alloy

    图  11  双向动态加载同步性问题

    Figure  11.  Synchronization of bidirectional dynamic loading

  • [1] TAYLOR A S, WEISS M, HILDITCH T, et al. Formability of cryo-rolled aluminium in uniaxial and biaxial tension [J]. Materials Science and Engineering: A, 2012, 555: 148–153. DOI: 10.1016/j.msea.2012.06.044.
    [2] NAMAZU T, FUJII M, FUJII H, et al. Thermal annealing effect on elastic-plastic behavior of Al-Si-Cu structural films under uniaxial and biaxial tension [J]. Journal of Microelectromechanical Systems, 2013, 22(6): 1414–1427. DOI: 10.1109/JMEMS.2013.2257985.
    [3] HANNON A, TIERNAN P. A review of planar biaxial tensile test systems for sheet metal [J]. Journal of Materials Processing Technology, 2008, 198(1−3): 1–13. DOI: 10.1016/j.jmatprotec.2007.10.015.
    [4] MAKINDE A, THIBODEAU L, NEALE K W. Development of an apparatus for biaxial testing using cruciform specimens [J]. Experimental Mechanics, 1992, 32(2): 138–144. DOI: 10.1007/BF02324725.
    [5] 蔡登安, 周光明, 王新峰, 等. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为 [J]. 材料工程, 2014(5): 73–77; 85. DOI: 10.11868/j.issn.1001-4381.2014.05.013.

    CAI D A, ZHOU G M, WANG X F, et al. Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading [J]. Journal of Materials Engineering, 2014(5): 73–77; 85. DOI: 10.11868/j.issn.1001-4381.2014.05.013.
    [6] BOEHLER J P, DEMMERLE S, KOSS S. A new direct biaxial testing machine for anisotropic materials [J]. Experimental Mechanics, 1994, 34(1): 1–9. DOI: 10.1007/BF02328435.
    [7] WU X D, WAN M, ZHOU X B. Biaxial tensile testing of cruciform specimen under complex loading [J]. Journal of Materials Processing Technology, 2005, 168(1): 181–183. DOI: 10.1016/j.jmatprotec.2004.11.003.
    [8] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. DOI: 10.1007/BF02411052.
    [9] HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression: Part I: experiments [J]. International Journal of Solids and Structures, 2011, 48(5): 687–697. DOI: 10.1016/j.ijsolstr.2010.11.005.
    [10] BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J]. International Journal of Impact Engineering, 2011, 38(2−3): 73–84. DOI: 10.1016/j.ijimpeng.2010.10.005.
    [11] HUANG H, FENG R. A study of the dynamic tribological response of closed fracture surface pairs by Kolsky-bar compression-shear experiment [J]. International Journal of Solids and Structures, 2004, 41(11−12): 2821–2835. DOI: 10.1016/j.ijsolstr.2004.01.005.
    [12] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
    [13] 郭伟国, 赵融, 魏腾飞, 等. 用于Hopkinson压杆装置的电磁驱动技术 [J]. 实验力学, 2010, 25(6): 682–689.

    GUO W G, ZHAO R, WEI T F, et al. Electromagnetic driving technique applied to split Hopkinson pressure bar device [J]. Journal of Experimental Mechanics, 2010, 25(6): 682–689.
    [14] NIE H L, SUO T, SHI X P, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators [J]. International Journal of Impact Engineering, 2018, 122: 73–82. DOI: 10.1016/j.ijimpeng.2018.08.004.
    [15] 曹增强, 佘公藩, 周听清. 应力波在变截面杆中传播的数值分析 [J]. 航空学报, 1998, 19(6): 71–75. DOI: 10.3321/j.issn:1000-6893.1998.06.013.

    CAO Z Q, SHE G F, ZHOU T Q. Numerical analyses of stress wave propagation in a variable section bar [J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(6): 71–75. DOI: 10.3321/j.issn:1000-6893.1998.06.013.
    [16] BECCU R, WU C M, LUNDBERG B. Reflection and transmission of the energy of transient elastic extensional waves in a bent bar [J]. Journal of Sound and Vibration, 1996, 191(2): 261–272. DOI: 10.1006/jsvi.1996.0120.
    [17] 邓庆田, 罗松南. 压电圆柱曲杆中波的传播 [J]. 振动与冲击, 2008, 27(5): 76–78; 94. DOI: 10.3969/j.issn.1000-3835.2008.05.020.

    DENG Q T, LUO S N. Wave propagation in piezoelectric cylindrical bent bars [J]. Journal of Vibration and Shock, 2008, 27(5): 76–78; 94. DOI: 10.3969/j.issn.1000-3835.2008.05.020.
    [18] 郭伟国, 赵思晗, 高猛, 等. 一种双轴Hopkinson杆高应变率拉伸装置及测试方法: CN110082204A [P]. 2019-08-02.
    [19] 聂海亮, 石霄鹏, 陈春杨, 等. 单轴双向加载分离式霍普金森压杆的数据处理方法 [J]. 爆炸与冲击, 2018, 38(3): 517–524. DOI: 10.11883/bzycj-2017-0361.

    NIE H L, SHI X P, CHEN C Y, et al. Data processing method for bidirectional-load split Hopkinson compression bar [J]. Explosion and Shock Waves, 2018, 38(3): 517–524. DOI: 10.11883/bzycj-2017-0361.
    [20] YUAN K B, GUO W G, SU Y, et al. Study on several key problems in shock calibration of high-g accelerometers using Hopkinson bar [J]. Sensors and Actuators A: Physical, 2017, 258: 1–13. DOI: 10.1016/j.sna.2017.02.017.
  • 加载中
图(11)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  152
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-07-19
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回