自由面变化条件下隧道电子雷管爆破参数确定方法

刘翔宇 龚敏 吴昊骏 安迪

刘翔宇, 龚敏, 吴昊骏, 安迪. 自由面变化条件下隧道电子雷管爆破参数确定方法[J]. 爆炸与冲击, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428
引用本文: 刘翔宇, 龚敏, 吴昊骏, 安迪. 自由面变化条件下隧道电子雷管爆破参数确定方法[J]. 爆炸与冲击, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428
LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428
Citation: LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428

自由面变化条件下隧道电子雷管爆破参数确定方法

doi: 10.11883/bzycj-2020-0428
基金项目: 中央高校基本科研业务费专项资金(FRF-AT-19-005)
详细信息
    作者简介:

    刘翔宇(1989- ),男,博士研究生,L1270039777@163.com

    通讯作者:

    龚 敏(1963- ),男,博士,教授,gongmustb@163.com

  • 中图分类号: O389; U455.6

Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface

  • 摘要: 电子雷管的技术潜力目前仍未在隧道工程中得以充分发挥,一个重要原因是没有严密理论支撑的爆破参数计算方法,药量、孔间延时等核心参数多沿用普通矿山法设计;其次是不能解决第二自由面形成后爆破参数计算准确性问题。以重庆观音桥隧道为研究背景,基于Anderson理论和电子雷管延时特性,提出隧道爆破在单自由面形成双自由面过程中,不同自由面条件下电子雷管爆破参数设计的新方法。现场获取不同药量单自由面单孔爆破振动曲线,逐一计算各孔间延时下的多孔合成振动,对比不同药量、不同延时合成振动曲线后确定单自由面爆破参数;根据电子雷管特点设计短延时掏槽爆破现场试验,获得起爆48 ms后已形成第二自由面;据此设计第二自由面形成后单孔爆破试验并计算双自由面下的合成振速、爆破参数,最终形成爆破全过程爆破参数计算方法。对计算结果进行综合分析后,现场设计主掏槽单孔药量1.2 kg,辅助掏槽单孔药量1.4 kg,孔间延时为5 ms;主掏槽与辅助掏槽间最小时差为35 ms;采用上述优化参数进行现场试验,在低振速控制的同时实现高效进尺。
  • 图  1  研究流程

    Figure  1.  Research process chart

    图  2  单自由面单孔爆破试验炮孔布置示意图

    Figure  2.  Layout of holes in single-hole blasting test with single free surface

    图  3  现场实测单自由面单孔振动波形

    Figure  3.  Single-hole vibration waveforms of single free surface measured on site

    图  4  1.4 kg药量单孔波形拟合曲线与实测曲线对比

    Figure  4.  Comparison between fitting curve and measured curve of 1.4 kg charge single-hole waveform

    图  5  单自由面下不同孔间延时8孔叠加最大振速

    Figure  5.  Eight-holes maximum superimposed vibration velocity with different delays under single free surface

    图  6  优化后掏槽孔炮孔布置图

    Figure  6.  Layout of optimized cut holes

    图  7  1.2 kg单自由面下不同延时4孔叠加最大振速

    Figure  7.  Four-holes maximum superimposed vibration velocity of 1.2 kg with different delays under single free surface

    图  8  8 ms孔间延时的计算合成振动曲线与实测振动曲线对比图

    Figure  8.  Comparison between calculated superimposed vibration curve and measured vibration curve under 8 ms delay

    图  9  第二自由面形成后单孔爆破试验炮孔布置示意图

    Figure  9.  Holes layout of single-hole blasting test after the second free surface is formed

    图  10  第二自由面形成前后1.4 kg单孔实测波形对比图

    Figure  10.  Comparison between measured single-hole waveforms of 1.4 kg before and after the second free surface is formed

    图  11  主掏槽与辅助掏槽之间不同延时叠加最大振速

    Figure  11.  Maximum superimposed vibration velocity of different delays between main cut and auxiliary cut holes

    图  12  ΔD=50 ms的计算曲线和实测曲线对比图

    Figure  12.  Comparison between calculated and measured curves when ΔD = 50 ms

    图  13  第二自由面形成前后1.4 kg不同延时下8孔叠加最大振速对比图

    Figure  13.  Comparison of 8-holes maximum superimposed vibration velocity of 1.4 kg under different delays before and after the formation of the second free surface

    图  14  辅助孔不同孔间延时振动强度对比区域

    Figure  14.  Vibration velocity comparison area of auxiliary holes with different delays

    图  15  辅助孔不同延时的爆破振动波形

    Figure  15.  Blasting vibration waveform of auxiliary holes with different delays

    图  16  爆破试验炮孔布置图

    Figure  16.  Holes layout of blasting test

    图  17  爆破试验实测振动波形

    Figure  17.  Measured vibration waveform of blasting test

  • [1] 汪旭光, 沈立晋. 工业雷管技术的现状和发展 [J]. 工程爆破, 2003, 9(3): 52–57. DOI: 10.3969/j.issn.1006-7051.2003.03.013.

    WANG X G, SHEN L J. The state-of-the-arts of industrial detonators [J]. Engineering Blasting, 2003, 9(3): 52–57. DOI: 10.3969/j.issn.1006-7051.2003.03.013.
    [2] 颜景龙. 中国电子雷管技术与应用 [J]. 中国工程科学, 2015, 17(1): 36–41. DOI: 10.3969/j.issn.1009-1742.2015.01.005.

    YAN J L. Technology and application of Chinese electronic detonator [J]. Engineering Sciences, 2015, 17(1): 36–41. DOI: 10.3969/j.issn.1009-1742.2015.01.005.
    [3] HASHEMI A S, KATSABANIS P. The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation [J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2327–2346. DOI: 10.1007/s00603-019-02043-9.
    [4] LENG Z D, SUN J S, LU W B, et al. Mechanism of the in-hole detonation wave interactions in dual initiation with electronic detonators in bench blasting operation [J]. Computers and Geotechnics, 2021, 129: 103873. DOI: 10.1016/j.compgeo.2020.103873.
    [5] SINGH P K, ROY M P, PASWAN R K, et al. Blast vibration effects in an underground mine caused by open-pit mining [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 79–88. DOI: 10.1016/j.ijrmms.2015.09.009.
    [6] FU H X, WONG L N Y, ZHAO Y, et al. Comparison of excavation damage zones resulting from blasting with nonel detonators and blasting with electronic detonators [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 809–816. DOI: 10.1007/s00603-013-0419-2.
    [7] 赵勇, 傅洪贤, 谢晋水, 等. 电子雷管在隧道钻爆法开挖中降振试验研究 [J]. 工程爆破, 2012, 18(1): 82–85. DOI: 10.3969/j.issn.1006-7051.2012.01.022.

    ZHAO Y, FU H X, XIE J S, et al. Experimental research on decreasing blasting vibration velocity by digital detonator [J]. Engineering Blasting, 2012, 18(1): 82–85. DOI: 10.3969/j.issn.1006-7051.2012.01.022.
    [8] 曹杨, 王旭春, 余志伟, 等. 隧道近距下穿老旧建筑物爆破振动监测及减振技术研究 [J]. 施工技术, 2017, 46(11): 82–85. DOI: 10.7672/sgjs2017110082.

    CAO Y, WANG X C, YU Z W, et al. Blasting vibration monitoring and reduction technology of tunnel under-passing aging buildings in a short distance [J]. Construction Technology, 2017, 46(11): 82–85. DOI: 10.7672/sgjs2017110082.
    [9] 傅洪贤, 沈周, 赵勇, 等. 隧道电子雷管爆破降振技术试验研究 [J]. 岩石力学与工程学报, 2012, 31(3): 597–603. DOI: 10.3969/j.issn.1000-6915.2012.03.018.

    FU H X, SHEN Z, ZHAO Y, et al. Experimental study of decreasing vibration technology of tunnel blasting with digital detonator [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 597–603. DOI: 10.3969/j.issn.1000-6915.2012.03.018.
    [10] 管晓明, 傅洪贤, 王梦恕. 隧道近距下穿山坡楼房爆破振动测试研究 [J]. 岩土力学, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.

    GUAN X M, FU H X, WANG M S. Blasting vibration characteristics monitoring of tunnel under-passing hillside buildings in short-distance [J]. Rock and Soil Mechanics, 2014, 35(7): 1995–2003. DOI: 10.16285/j.rsm.2014.07.027.
    [11] 程围峰, 王振宇, 陈银鲁, 等. 引水隧洞电子雷管爆破震动特征研究 [J]. 铁道工程学报, 2014(5): 79–84. DOI: 10.3969/j.issn.1006-2106.2014.05.015.

    CHENG W F, WANG Z Y, CHEN Y L, et al. Research on the vibration characteristic of electronic detonator blasting for water diversion tunnel [J]. Journal of Railway Engineering Society, 2014(5): 79–84. DOI: 10.3969/j.issn.1006-2106.2014.05.015.
    [12] 马晓明, 王振宇, 陈银鲁, 等. 精确微差爆破震动能量分布特征分析 [J]. 解放军理工大学学报(自然科学版), 2012, 13(4): 449–454. DOI: 10.3969/j.issn.1009-3443.2012.04.018.

    MA X M, WANG Z Y, CHEN Y L, et al. Analysis of energy distribution of accurate millisecond blasting vibration [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(4): 449–454. DOI: 10.3969/j.issn.1009-3443.2012.04.018.
    [13] 田振农, 孟祥栋, 王国欣. 城区隧道电子雷管起爆错相减震机理分析 [J]. 振动与冲击, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.

    TIAN Z N, MENG X D, WANG G X. Mechanism analysis of fault-phase vibration reduction for tunnel blasting initiated by electronic detonators in city area [J]. Journal of Vibration and Shock, 2012, 31(21): 108–111. DOI: 10.3969/j.issn.1000-3835.2012.21.022.
    [14] ANDERSON D A. A method site-specific prediction and control of ground vibration from blasting [C]// Proceedings of the First Mini-symposium on Explosives and Blasting Research, 1985: 28−42.
    [15] HINZEN K G. Modelling of blast vibrations [J]. International Journal of Rock Mechanics and Mining Sciences, 1988, 25(6): 439–445. DOI: 10.1016/0148-9062(88)90984-9.
    [16] AZIZABADI H R M, MANSOURI H, FOUCHÉ O. Coupling of two methods, waveform superposition and numerical, to model blast vibration effect on slope stability in jointed rock masses [J]. Computers and Geotechnics, 2014, 61: 42–49. DOI: 10.1016/j.compgeo.2014.04.008.
    [17] 龚敏, 吴昊骏, 孟祥栋, 等. 密集建筑物下隧道开挖微振控制爆破方法与振动分析 [J]. 爆炸与冲击, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.

    GONG M, WU H J, MENG X D, et al. A precisely-controlled blasting method and vibration analysis for excavation under dense buildings [J]. Explosion and Shock Waves, 2015, 35(3): 350–358. DOI: 10.11883/1001-1455(2015)03-0350-09.
    [18] 吴昊骏, 龚敏. 基于雷管实际延时范围的逐孔爆破振动合成计算与应用 [J]. 爆炸与冲击, 2019, 39(2): 151–161. DOI: 10.11883/bzycj-2017-0415.

    WU H J, GONG M. Calculation and application of hole by hole blasting vibration superposition based on measured delay times of detonators [J]. Explosion and Shock Waves, 2019, 39(2): 151–161. DOI: 10.11883/bzycj-2017-0415.
    [19] IWANO K, HASHIBA K, NAGAE J, et al. Reduction of tunnel blasting induced ground vibrations using advanced electronic detonators [J]. Tunnelling and Underground Space Technology, 2020, 105: 103556. DOI: 10.1016/j.tust.2020.103556.
    [20] 龚敏, 吴昊骏. 隧道爆破现场高速图像采集与精确控制爆破参数研究 [J]. 爆炸与冲击, 2019, 39(5): 3–12. DOI: 10.11883/bzycj-2018-0319.

    GONG M, WU H J. High-speed photography image acquisition system in tunnel blasting and parameters study on precisely controlled blasting [J]. Explosion and Shock Waves, 2019, 39(5): 3–12. DOI: 10.11883/bzycj-2018-0319.
  • 加载中
图(17)
计量
  • 文章访问数:  511
  • HTML全文浏览量:  609
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回