Numerical simulation on stability of composite cylindrical shell under impact compression
-
摘要: 针对复合圆柱壳在炸药爆轰作用下的动力学响应及在此过程中伴随的失稳问题,研究了其制造工艺中可能出现的缺陷以及圆柱壳中铜线螺旋角和直径对复合圆柱壳稳定性产生的影响。采用SPH-FEM耦合算法,建立了复合圆柱壳二维细节模型,并提出了一种基于圆柱壳内壁粒子速度历史的失稳判据,计算了在不同参数条件下复合圆柱壳的失稳时间及对应的压缩率,对影响复合圆柱壳稳定性的因素进行了评估。分析结果表明,在复合圆柱壳制备过程中存在的折返层缺陷和铜线直径对复合圆柱壳的稳定性有较大影响,而螺旋角度对其稳定性影响不大。Abstract: For the dynamic response and the instability of the composite cylindrical shell under explosive loading, many factors may affect the stability behavior of the cylindrical shell. In this paper, three main aspects, i. e. the possible defects in the manufacturing process, the spiral angle and the diameter of the copper wire were investigated. Firstly, the 2D detailed model of the composite cylindrical shell was established to calculated the dynamic response under explosive loading, in which SPH-FEM coupling algorithm was applied. In order to verify the accuracy of the structural dynamic response by using the SPH-FEM model, the simulation results of the metal epoxy composite sleeve were compared, which demonstrated the reliability and numerical accuracy. Secondly, to evaluate the factors affecting the stability of the composite cylindrical shell, an instability criterion based on the particle velocity history of inner wall of the cylindrical shell was proposed. In this method, the velocity curve of the inner wall of the composite cylindrical shell was divided into three stages, and the time corresponding to the point of the velocity surge in the third stage was taken as the instability time of the composite cylindrical shell. Thus, the compression rate of the structure corresponding to the instability under different conditions could be obtained. The results show that the defects and the diameter of copper wire have great influence on the stability of the composite cylindrical shell, while the spiral angle has little influence. Moreover, in the manufacture process of the composite cylindrical shell, it is necessary to improve the quality as much as possible to ensure the integrity of the copper wire. In addition, the parameter of the copper wire diameter should be considered in the device design and experiment, since the copper wire diameter would directly affect the thickness of each layer of the composite cylindrical shell and the defect distribution of copper wire.
-
表 1 Comp B炸药主要材料参数
Table 1. Main material parameters of Comp B explosive
A/GPa B/GPa R1 R2 ω v/(m·s−1) p/GPa 524 767.8 4.2 1.1 0.34 7980 29.5 注:v为炸药的爆速,p为炸药CJ爆轰压力。 表 2 铜线主要材料参数
Table 2. Main material parameters of copper wire
ρ/(kg·m−3) Tmelt/K A0/KPa B0/KPa n C m 8.96 1356 9.05×105 2.92×105 0.31 0.0253 1.095 表 3 不同螺旋角复合圆柱壳失稳时间及压缩率对比
Table 3. Comparison of instability time and compression ratio of composite cylindrical shell with different spiral angles
θ/(°) 失稳时间/μs 失稳时刻压缩率/% 0 24.35 68.19 10 24.28 68.41 15 24.76 69.15 -
[1] BYKOV A I, DOLOTENKO M I. An MC-1 cascade magnetocumulative generator of multimegagauss magnetic fields—ideas and their realization [J]. Instruments and Experimental Techniques, 2015, 58(4): 531–538. DOI: 10.1134/S0020441215040284. [2] 王涛, 汪兵, 林健宇, 等. 柱形汇聚几何中内爆驱动金属界面不稳定性 [J]. 爆炸与冲击, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.WANG T, WANG B, LIN J Y, et al. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry [J]. Explosion and Shock Waves, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150. [3] ALTGILBERS L L, BROWN M D J, GRISHNAEV I, 等. 磁通量压缩发生器 [M]. 孙承纬, 周之奎, 译. 北京: 国防工业出版社, 2008: 3−5. [4] 陆禹, 谷卓伟. 内爆磁通量压缩过程的一维磁流体计算及分析 [J]. 高压物理学报, 2017, 31(4): 419–425. DOI: 10.11858/gywlxb.2017.04.010.LU Y, GU Z W. One-dimensional magneto-hydrodynamics calculation and analysis of implosion magnetic flux compression process [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 419–425. DOI: 10.11858/gywlxb.2017.04.010. [5] 张春波, 宋振飞, 谷卓伟, 等. 内爆压缩多层密绕螺线管的数值模拟 [J]. 爆炸与冲击, 2018, 38(5): 999–1005. DOI: 10.11883/bzycj-2016-0052.ZHANG C B, SONG Z F, GU Z W, et al. Numerical simulation of the multilayer coiled solenoid under implosive compression [J]. Explosion and Shock Waves, 2018, 38(5): 999–1005. DOI: 10.11883/bzycj-2016-0052. [6] 赵士操, 宋振飞, 赵晓平. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.ZHAO S C, SONG Z F, ZHAO X P. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15. [7] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201. [8] LIU G R, LIU M B. 光滑粒子流体动力学: 一种无网格粒子法 [M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005: 27−34. [9] 曾卓. 爆轰驱动多级复合套筒数值仿真研究 [D]. 西安: 西北工业大学, 2020: 18−33. [10] 赵星宇, 白春华, 姚箭, 等. 燃料空气炸药爆轰产物JWL状态方程参数计算 [J]. 兵工学报, 2020, 41(10): 1921–1929. DOI: 10.3969/j.issn.1000-1093.2020.10.001.ZHAO X Y, BAI C H, YAO J, et al. Parameters calculation of JWL EOS of FAE detonation products [J]. Acta Armamentarii, 2020, 41(10): 1921–1929. DOI: 10.3969/j.issn.1000-1093.2020.10.001. [11] 吴善幸, 陈大年, 胡金伟, 等. 高导无氧铜圆柱-平板冲击实验及不同本构模型效果比较 [J]. 爆炸与冲击, 2009, 29(3): 295–299. DOI: 10.11883/1001-1455(2009)03-0295-05.WU S X, CHEN D N, HU J W, et al. A cylinder-plate impact test for oxygen-free high-conductivity copper and comparison of effects of three constitutive models [J]. Explosion and Shock Waves, 2009, 29(3): 295–299. DOI: 10.11883/1001-1455(2009)03-0295-05. [12] 陆禹. 柱面内爆磁压缩过程的磁流体力学数值模拟 [D]. 四川绵阳: 中国工程物理研究院, 2017: 24−37. [13] 张春波. 复合结构套筒内爆压缩的数值模拟研究 [D]. 四川绵阳: 中国工程物理研究院, 2016: 33−44. 期刊类型引用(14)
1. 路燕泽,甘德清,田欣,王庆刚,刘志义,向伟华,王立杰. 动载下磁铁矿石铁硅比对其力学特性及能耗规律的影响. 矿业研究与开发. 2025(03): 148-155 . 百度学术
2. 张琨,张忍杰,任建喜,刘政,宋嘉炜. 冲击荷载作用下煤岩力学特性研究及能量演化特征. 煤炭技术. 2024(02): 1-5 . 百度学术
3. 杜洪波,王鑫婷,魏明东,阿比尔的,王浩然. 静水压环境下岩石动态压剪耦合力学响应与本构模型. 工程科学与技术. 2024(02): 186-195 . 百度学术
4. 杨科,许日杰,刘帅,刘文杰,张杰. 冲击载荷下煤样动力学响应特性与损伤本构模型. 振动与冲击. 2024(09): 139-148 . 百度学术
5. 马衍坤,黄勤豪,孔祥国,冯俊军,殷志强,王超. 震动载荷多次作用下烟煤孔裂隙结构演化特征试验研究. 煤炭学报. 2024(04): 1882-1893 . 百度学术
6. 解北京,刘天乐,栾铮,张景顺,于瑞星,武博文. 冻结黏土单轴动态力学特性及本构模型研究. 西安建筑科技大学学报(自然科学版). 2024(02): 183-191 . 百度学术
7. 解北京,栾铮,陈冬新,钟诗晴. 不同长径比煤样动力学特征及本构模型. 矿业科学学报. 2023(02): 190-201 . 百度学术
8. 叶海旺,温颖,雷涛,王其洲,余梦豪,严立德,韦文蓬,李兴旺,王炯辉,赵明生. 不同品位石墨矿岩冲击破坏模式与能耗特性研究. 金属矿山. 2023(03): 65-72 . 百度学术
9. 雷学文,李浩明,孟庆山,洪胜男,周皓然,蒋雪. 冲击荷载下珊瑚礁灰岩动态力学特性及损伤特征. 长江科学院院报. 2023(05): 85-93 . 百度学术
10. 解北京,栾铮,刘天乐,武博文,钟诗晴. 静水压下原生组合煤岩动力学破坏特征. 煤炭学报. 2023(05): 2153-2167 . 百度学术
11. 陈彦龙,李明,浦海,巨峰,张凯,吴豪帅. 考虑循环载荷初始损伤效应的煤样动态力学特性试验研究. 煤炭学报. 2023(05): 2123-2137 . 百度学术
12. 李庆文,高森林,胡露露,禹萌萌,刘艺伟,曾杏钢,祝青云,曹行,黄筱. 不同加载速率下非均质煤样能量耗散损伤本构关系. 煤炭学报. 2022(S1): 90-102 . 百度学术
13. 郑佳奇,赵子彦,牟娟. 应变速率对具有形变诱发相变的TiZr基非晶复合材料力学行为的影响. 沈阳大学学报(自然科学版). 2021(04): 294-299 . 百度学术
14. 赵晓泽,李晓丽,申向东,杨健. 基于SHPB的砒砂岩地聚物水泥复合土动态力学特性. 农业工程学报. 2021(17): 310-316 . 百度学术
其他类型引用(19)
-