Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

充-岩界面耦合体爆破动力响应机理

胡建华 张涛 丁啸天 温观平 文增生 郭萌萌

周正青, 聂建新, 覃剑锋, 裴红波, 郭学永. 铝氧比对含铝炸药性能影响的数值模拟[J]. 爆炸与冲击, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
引用本文: 胡建华, 张涛, 丁啸天, 温观平, 文增生, 郭萌萌. 充-岩界面耦合体爆破动力响应机理[J]. 爆炸与冲击, 2021, 41(8): 085201. doi: 10.11883/bzycj-2020-0433
Zhou Zheng-qing, Nie Jian-xin, Qin Jian-feng, Pei Hong-bo, Guo Xue-yong. Numerical simulations on effects of Al/O ratio on performance of aluminized explosives[J]. Explosion And Shock Waves, 2015, 35(4): 513-519. doi: 10.11883/1001-1455(2015)04-0513-07
Citation: HU Jianhua, ZHANG Tao, DING Xiaotian, WEN Guanping, WEN Zengsheng, GUO Mengmeng. Dynamic response mechanism of a rock-filling interfacial coupling body to blasting in it[J]. Explosion And Shock Waves, 2021, 41(8): 085201. doi: 10.11883/bzycj-2020-0433

充-岩界面耦合体爆破动力响应机理

doi: 10.11883/bzycj-2020-0433
基金项目: 国家自然科学基金(41672298);中南大学研究生自主探索创新项目(2021zzts0883)
详细信息
    作者简介:

    胡建华(1975- ),男,博士,教授,hujh21@csu.edu.cn

    通讯作者:

    张 涛(1997- ),男,硕士研究生,tao_zhang66@csu.edu.cn

  • 中图分类号: O382.2; TD853

Dynamic response mechanism of a rock-filling interfacial coupling body to blasting in it

  • 摘要: 充填采矿法的充填体与矿岩体构成的界面耦合结构体,受采矿爆破影响会持续受到动力扰动,在充-岩界面耦合处易产生脱粘、裂隙扩展等行为,为井下生产带来安全隐患。采用ANSYS/LS-DYNA建立了充-岩界面耦合体模型,分析了爆破作用对界面耦合体结构的力学影响,获取了不同界面粗糙度、充填体养护龄期和起爆方式等因素对爆破裂隙扩展及应力波峰值应力的影响,探讨了爆破动力作用机理。结果表明:(1)爆破冲击在界面耦合体中存在拉、压和剪3种力学作用,且随着界面粗糙度的提高,界面受力呈先上升后下降趋势;(2)随着充填体养护时间增长,界面破坏逐步从受拉转化成剪切损伤;(3)同时起爆对耦合界面的损伤比逐孔起爆的小。
  • 含铝炸药是一类高密度、高爆热的非理想炸药, 被广泛应用于各种武器战斗部。目前含铝炸药在水中和空中爆炸已得到广泛研究[1-4], 但是在混凝土等密实介质中的爆炸作用过程公开报道较少。混凝土是民用和军用建设应用最为广泛的材料之一, 与空气、水相比, 混凝土的密度更大, 且具有一定强度, 对爆轰产物气体的约束作用更强, 更有利于维持铝粉反应所需要的高温、高压环境。研究含铝炸药对混凝土的爆炸作用具有非常重要的意义。Q.T.Wang等[5]利用数值模拟方法研究了含铝炸药对混凝土的破坏效应; 李小雷等[6]利用理论计算和数值模拟相结合的方法, 研究了含铝炸药在混凝土的爆炸, 得到了铝含量与毁伤效应的关系, 但是没有对含铝炸药的爆炸冲击波进行研究。

    冲击波是炸药对周围介质产生破坏效应的一个重要手段, 在混凝土介质中对冲击波进行研究将不仅有助于了解炸药性能, 而且可以为提高混凝土抗冲击防护性能提供理论指导。在冲击波测试方面, 王永刚等[7]、焦楚杰等[8]、Z. Rosenberg等[9]利用锰铜传感器测量到了混凝土中的冲击波, 但是由于传感器的有效作用时间较短, 均没有记录完整的记录到冲击波时程曲线, 且测试得到信号干扰大, 严重影响了对混凝土介质中冲击波的分析。针对含铝炸药在混凝土中的爆炸作用这一复杂的问题, 采用数值模拟计算获取爆炸过程中冲击波传播及衰减规律, 是一种非常有效的手段。

    本文中运用AUTODYN有限元程序对3种炸药在混凝土中的爆炸作用过程进行数值模拟研究; 与实验结果对照, 验证模型的可靠性; 计算3种不同铝氧比炸药在混凝土中爆炸毁伤的情况, 并且分析铝氧比对冲击波峰值压力和冲击波能的影响。

    以含铝炸药在混凝土中的爆炸实验为基本物理模型, 建立数值计算模型, 实验现场见图 1。混凝土靶板的尺寸是1.2 m×1.2 m×0.8 m, 在靶板的中心处留有一个圆柱孔(直径40 mm, 深100 mm), 药柱尺寸为∅35 mm×40 mm, 药量为70 g, 起爆点为药柱上端面中心处。网格尺寸选为0.4 cm, 利用欧拉法来描述炸药材料, 在炸药周围的空白区域填充空气, 在欧拉网格的边界定义流出边界。混凝土采用拉格朗日网格描述。为了计算方便, 简化成轴对称模型, 建立1/2模型。为了与实验工况保持一致, 在距离炸药中心5、10、15和20 cm处设置观测点, 计算该点冲击波压力。数值模型如图 2所示。

    图  1  实验现场
    Figure  1.  Experimental site
    图  2  计算模型
    Figure  2.  Simulation model

    采用JWL状态方程[10]和Miller反应速率模型[11]来共同描述RDX基含铝炸药的二次反应能量释放过程:

    p=A(1ωR1V)e(R1V)+B(1ωR2V)e(R2V)+ω(E+λQ)V (1)

    式中:p为产物压力; V为产物相对比容; E为产物的内能; Q为非理想成分含有的热量; λ为非理想成分的反应度, 0≤λ≤1;ABR1R2ω为待定系数, 由圆筒实验得到。计算时炸药的性能及状态方程参数均由实验测得, 具体结果分别如表 1表 2所示, 其中:w为各成分的质量分数, η为铝氧物质的量比, ρ为密度, Q为爆热, D为爆速, pd为爆压。

    表  1  炸药性能[12]
    Table  1.  Characteristics of explosives[12]
    炸药w/%ηρ/(g·cm-3)Q/(MJ·kg-1)D/(m·s-1)pd/GPa
    RDXAlwax
    HL0950501.6735.8798 32529.39
    HL15801550.2571.7636.7368 12123.91
    HL30653050.6321.8657.5947 87922.21
    下载: 导出CSV 
    | 显示表格
    表  2  炸药JWL状态方程参数[12]
    Table  2.  Parameters of JWL equations for explosives[12]
    炸药A/GPaB/GPaR1R2ω
    HL0694.5213.754.551.300.49
    HL151 897.5424.775.831.720.35
    HL302 225.0021.595.941.780.38
    下载: 导出CSV 
    | 显示表格

    利用Miller反应速率方程定义非理想成分的反应速率:

    dλdt=G(1λ)apb (2)

    式中:Gab是与反应速率相关的系数。根据文献[13], 含铝炸药反应速率指数取a=1/2, b=1/6。G的取值与炸药特性、铝粉的颗粒形状和尺寸有关。

    混凝土内在的各向异性及多孔特性, 使其有复杂的体积应变, 内能受压力变化影响非常明显。考虑到这一因素, 文中选取p-a状态方程, 既能够很有效描述混凝土在高压下的热力学行为, 也能很好的描述在低压区时的压缩行为。混凝土本构方程选用侧重于描述混凝土的压缩损伤的RHT模型, RHT模型中包含有失效面、弹性极限面、残余失效面、加载面和破裂面。实验中所用混凝土的抗压强度是31.6~33.5 MPa, 密度为2 300 kg/m3

    为了验证本文所选用的材料模型和状态方程, 对实验的工况进行了数值模拟计算, 表 3是不同炸药作用下混凝土中毁伤效应的计算值与实测值的对比, 其中:m为药量, d为炸药埋深, R为漏斗坑半径, H为漏斗坑深度, 表 3中实验值见参考文献[12]。数值模拟结果普遍高于实测值, 偏差在15%以内, 由于非均匀介质中的冲击波测试本身存在很大的离散性, 这个偏差可以接受。图 3是利用锰铜传感器实测的冲击波压力与计算压力时程曲线的对比, 从图 3可以看出计算得到的冲击波信号实验结果吻合较好, 且模拟结果弥补了实验信号的不完整。由此说明文中所采用的材料模型、状态方程以及数值模拟方法可用于混凝土中含铝炸药爆炸的研究。

    表  3  数值模拟与实验结果的比较
    Table  3.  Comparison of experimental and simulated results
    炸药m/gd/cmR/cmH/cm
    实验数值模拟实验数值模拟
    HL0701027.224.814.113.0
    HL15701028.626.914.514.2
    HL30701025.723.313.611.9
    下载: 导出CSV 
    | 显示表格
    图  3  冲击波时程曲线的数值计算与实验结果对比
    Figure  3.  Numerical shock wave stress versus time compared with experimental results

    以损伤度f表示混凝土的破坏, 图 4给出了炸药爆炸后混凝土的破坏过程, 3种炸药作用下混凝土破坏的发展趋势相同。炸药从零时刻开始起爆, 20 μs时混凝土在冲击波的压缩作用下粉碎破坏。随着冲击波的传播, 破坏区域逐渐增大。冲击波在自由面反射后形成拉伸冲击波, 由于混凝土的抗拉强度远小于抗压强度, 在拉伸波的作用下混凝土更容易发生破坏。60 μs时靠近自由面的区域出现了明显的破坏, 这是压缩波和反射拉伸波共同作用的结果。药柱底端介质的破坏主要是由冲击波的压缩作用引起的, 在拉伸波和压缩波的共同作用下, 混凝土中出现了一个漏斗坑形状的破坏区域。

    图  4  混凝土的损伤发展过程
    Figure  4.  The damage development process of concrete

    3种炸药作用下的冲击波压力时程曲线如图 5所示。HL15和HL30的冲击波峰值压力小于HL0, 但是压力衰减明显慢与HL0, 这主要是由于铝粉的二次反应, 虽然二次反应放出的热量不能支持爆轰波阵面的传播, 但它可以使爆轰产物的温度和压力维持较长的时间而不致过快的衰减。

    图  5  混凝土中的冲击波时程曲线
    Figure  5.  Shock wave stress versus time in concrete

    靶板中冲击波峰值压力与比例距离的关系一般可以用如下方程来描述:

    pr=D1D21 (3)

    式中:pr为混凝土介质中距爆心处的冲击波压力峰值(GPa); 是比例距离, =r/r0, r0为炮孔半径, r为观测点与爆心之间的距离; D1为比例系数, D2为衰减指数, D1D2的值与炸药和混凝土介质的性质等相关。

    利用模拟所得到数据进行拟合, 得到冲击波压力峰值与比例距离之间的关系, 如图 6所示, 其中图 6(b)为图 6(a)中虚线框内的放大图。≤10时, 不同炸药在10 cm炸深下压力峰值随比例距离的衰减规律为:

    pr={25.6ˉr2.10HL013.1ˉr1.71HL158.65ˉr1.60HL30 (4)
    图  6  冲击波峰值压力与比例距离的关系
    Figure  6.  Relationship between shock wave peak load and scaled distance

    式(4)中的比例距离是观测点的爆心距与炮孔半径的比值, 是反映观测点与炸药中心距离的一个量纲一量。在比例距离≤10范围内, 压力峰值随传播距离呈指数衰减规律, 随着铝氧比的增加, 衰减指数减小。根据图 6(a)可知, 在比例距离≤5的范围内, 在混凝土介质中炸药按冲击波压力峰值由大到小依次为:HL0, HL15, HL30;随着传播距离的增加, HL0炸药作用下的压力峰值衰减最快, 其次是HL15, HL30衰减最慢; 根据图 6(b)可知, 在比例距离≤10范围内, 炸药按压力峰值由大到小依次为:HL15, HL30, HL0。这主要是由于含铝炸药中铝粉反应放出的能量对爆轰产物的能量进行了补充, 延缓了冲击波峰值压力的衰减。

    本文选取的4个观测点离炸药的中心距离较近, 所以在炸药爆炸产生的高温高压环境下, 爆炸近区的混凝土介质可以近似看作流体介质.因此在计算混凝土中的冲击波能量时可以参照在水中冲击波能[14]的公式进行推导, 以爆炸点为坐标原点, 设混凝土中任一点的Euler坐标为X, 比冲击波能Esw

    Esw=4πX2wρ0c0ta+τtap2(t)dt (6)

    式中:X为测点到爆心的距离, w为装药质量, ρ0为混凝土密度, c0为混凝土中波速, ta为冲击波到达时间, p(t)为压力时程, τ为正压作用时间。

    将模拟得到的冲击波时程结果带入式(6)进行计算, 得到比冲击波能随距离的关系, 如图 7所示。

    图  7  比冲击波能比较
    Figure  7.  Comparison of shock wave energy

    在以RDX为基的炸药中添加适量的铝粉可以提高比冲击波能, 这主要是由于铝粉反应放出的能量转化为炸药的冲击波能, 但是铝粉添加过多将导致冲击波峰值压力的降低, 比冲击波能下降。由图 7可知, 当铝含量为15%, 铝氧比为0.26时, 比冲击波能最大, 在比例距离≤10范围内, 炸药按比冲击波能由大到小依次为:HL0, HL15, HL30。结合实验的毁伤结果可知, 炸药的比冲击波能越高, 其毁伤效果越好。在比例距离为2.5处, HL0、HL15、HL30的比冲击波能分别为2.12、2.87、1.38 MJ/kg。

    通过AUTODYN数值计算与实验相结合的方法, 模拟了含铝炸药在混凝土中的爆炸作用过程, 数值模拟结果与实验结果基本符合, 说明材料的参数和选用的计算方法合理可行。根据计算的结果可知, 在比例距离在2.5到10之间时, 冲击波峰值压力呈指数衰减, 衰减指数分别为2.10、1.71、1.60, 衰减指数随铝氧比的增大而减小。这主要是因为含铝炸药中铝粉的反应是在C-J面后进行的, 虽然二次反应放出的热量不能支持爆轰波阵面的传播, 但是它可以使爆轰产物的温度与压力维持较长时间而不过快的衰减。这使含铝炸药爆炸形成的冲击波压力-时间曲线不像非含铝炸药那样陡峭, 铝氧比越高冲击波压力-时间曲线衰减越慢, 同时冲击波峰值压力随距离的衰减也越缓慢。另外, 以RDX为基的炸药中添加适量的铝粉可以提高比冲击波能, 但是铝粉添加过多将导致冲击波峰值压力降低, 进而导致比冲击波能下降, 3种炸药比冲击波能的大小顺序为:HL15, HL0, HL30。

  • 图  1  炮孔布置

    Figure  1.  Arrangement of blasting holes

    图  2  物理模型(以单排炮孔模型为例)

    Figure  2.  The physical model (taking the single-row blasting hole model as an example)

    图  3  网格划分(以两帮炮孔模型为例)

    Figure  3.  Grid division (taking the edge blasting hole model as an example)

    图  4  爆破应力云图(以7 d龄期的平直形界面耦合体为例)

    Figure  4.  Blasting stress nephograms (taking the 7-day-age coupling body with a flat interface as an example)

    图  5  监测点布置方式示意

    Figure  5.  Layout of monitoring points

    图  6  监测点应力时程曲线对比(以7 d龄期的平直形界面耦合体为例)

    Figure  6.  Comparison of stress-time curves at the monitoring points (taking the 7-day-age coupling body with a flat interface as an example)

    图  7  监测点加速度时程曲线对比(以7 d龄期的平直形界面耦合体为例)

    Figure  7.  Comparison of acceleration-time curves at the monitoring points (taking the 7-day-age coupling body with a flat interface as an example)

    图  8  不同粗糙度耦合界面爆破裂隙对比(以采用不同炮孔模型逐孔起爆的7 d龄期界面耦合体为例)

    Figure  8.  Comparison of blasting cracks at different roughness coupling interfaces (taking the 7-day-age interface coupling body detonated hole by hole based on different blasing hole models as an example)

    图  9  不同龄期、不同界面粗糙度界面耦合体爆破裂隙对比(以基于单排炮孔模型逐孔起爆的界面耦合体为例)

    Figure  9.  Comparison of blasting cracks in different-age interfacial coupling bodies with different interface roughnesses (taking the interface coupling bodies detonated hole by hole based on the the single-row blasting hole model as an example)

    图  10  不同龄期、不同界面粗糙度界面耦合体爆破裂隙对比(以基于两帮炮孔模型逐孔起爆的界面耦合体为例)

    Figure  10.  Comparison of blasting cracks in different-age interfacial coupling bodies with different interface roughnesses (taking the interface coupling bodies detonated hole by hole based on the the edge blasting hole model as an example)

    图  11  基于单排炮孔模型,不同起爆方式下,界面粗糙度不同的7 d龄界面耦合体爆破裂隙对比

    Figure  11.  Comparison of blasting cracks in 7-day-age interface coupling bodies with different interfacial roughnesses detonated by different modes based on the single-row blasting holde model

    图  12  基于两帮炮孔模型,不同起爆方式下,界面粗糙度不同的7 d龄界面耦合体爆破裂隙对比

    Figure  12.  Comparison of blasting cracks in 7-day-age interface coupling bodies with different interfacial roughnesses detonated by different modes based on the edge blasting holde model

    表  1  炮孔布置参数

    Table  1.   Parameters of blasting hole arrangement

    布置方式炸药密度/(kg·m−3孔径/mm孔深/m炮孔排距/m炮孔间距/m
    垂直中深孔106090822
    下载: 导出CSV

    表  2  耦合界面形态及对应节理粗糙度

    Table  2.   Coupling interface morphologies and the corresponding joint roughness coefficients

    耦合界面类别剖面线形态cjr
    平直形0
    波浪形 8.12
    锯齿形18.38
    下载: 导出CSV

    表  3  炸药材料及JWL状态方程参数

    Table  3.   Parameters for explosive materials and JWL equation of state

    密度/(kg·m−3爆速/(km·s−1A/GPaB/GPaR1R2ωE/GPa
    1 06042200.24.51.10.354.2
    下载: 导出CSV

    表  4  岩石和充填体材料参数

    Table  4.   Parameters for rocks and filling materials

    材料密度/(kg·m−3)泊松比弹性模量/GPa单轴抗压强度/GPa
    岩石2 5510.2525.00100.00
    7 d龄期充填体2 1800.31 0.92 2.10
    28 d龄期充填体2 2000.24 2.20 4.17
    下载: 导出CSV

    表  5  不同粗糙度界面耦合体监测点1~4峰值拉应力

    Table  5.   Peak tensile stress at monitoring points 1−4 in the interface coupling bodies with different roughnesses

    监测点编号单排炮孔峰值拉应力/MPa两帮炮孔峰值拉应力/MPa
    cjr=0cjr=8cjr=20cjr=0cjr=8cjr=20
    19.963.062.560.734.760.73
    202.850.040.904.460.04
    309.17×10−30.023.73×10−30.010.02
    409.61×10−30.014.86×10−30.020.02
    下载: 导出CSV

    表  6  不同龄期界面耦合体监测点1~4峰值拉应力

    Table  6.   Peak tensile stress at monitoring points 1−4 in different-age interface coupling bodies

    监测点编号单排炮孔峰值拉应力/MPa两帮炮孔峰值拉应力/MPa
    7 d龄期28 d龄期7 d龄期28 d龄期
    19.96 3.12 0.73 0.70
    21.15×10-32.10×10-30.90 0.97
    31.43×10-30.03 3.73×10-30.56
    49.56×10-40.02 4.86×10-30.26
    下载: 导出CSV

    表  7  不同起爆方式下界面耦合体监测点1~4峰值拉应力

    Table  7.   Peak tensile stress at monitoring points 1−4 in interfacial coupling bodies with different detonation modes

    监测点编号单排炮孔峰值拉应力/MPa两帮炮孔峰值拉应力/MPa
    同时起爆逐孔起爆同时起爆逐孔起爆
    19.962.660.73 14.64
    200.090.90 2.34
    300.053.73×10−3 0.19
    400.044.86×10−3 0.16
    下载: 导出CSV
  • [1] 张海波, 宋卫东. 评述国内外充填采矿技术发展现状 [J]. 中国矿业, 2009, 18(12): 59–62. DOI: 10.3969/j.issn.1004-4051.2009.12.018.

    ZHANG H B, SONG W D. Discussion on the current state of backfill mining from the domestic and foreign development [J]. China Mining Magazine, 2009, 18(12): 59–62. DOI: 10.3969/j.issn.1004-4051.2009.12.018.
    [2] 王湘桂, 唐开元. 矿山充填采矿法综述 [J]. 矿业快报, 2008, 24(12): 1–5.

    WANG X G, TANG K Y. Overview of cut and fill method for mines [J]. Express Information of Mining Industry, 2008, 24(12): 1–5.
    [3] 尹升华, 吴爱祥. 缓倾斜中厚矿体采矿方法现状及发展趋势 [J]. 金属矿山, 2007(12): 10–13. DOI: 10.3321/j.issn:1001-1250.2007.12.002.

    YIN S H, WU A X. Status quo of mining methods for gently inclined medium-thick orebodies and their development trend [J]. Metal Mine, 2007(12): 10–13. DOI: 10.3321/j.issn:1001-1250.2007.12.002.
    [4] 刘光生. 充填体与围岩接触成拱作用机理及强度模型研究[D]. 北京: 北京科技大学, 2017: 17−22.

    LIU G S. Required strength model of cemented backfill with research on arching mechanism considering backfill-rock interaction [D]. Beijing: University of Science and Technology Beijing, 2017: 17−22.
    [5] 韩斌, 王贤来, 肖卫国. 基于多元非线性回归的井下采场充填体强度预测及评价 [J]. 采矿与安全工程学报, 2012, 29(5): 714–718.

    HAN B, WANG X L, XIAO W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis [J]. Journal of Mining and Safety Engineering, 2012, 29(5): 714–718.
    [6] 贺桂成, 刘永, 丁德馨, 等. 废石胶结充填体强度特性及其应用研究 [J]. 采矿与安全工程学报, 2013, 30(1): 74–79.

    HE G C, LIU Y, DING D X, et al. Strength characteristic of cemented waste rock backfills and its application [J]. Journal of Mining and Safety Engineering, 2013, 30(1): 74–79.
    [7] 孙宁新, 雷明锋, 张运良, 等. 软弱夹层对爆炸应力波传播过程的影响研究 [J]. 振动与冲击, 2020, 39(16): 112–119, 147. DOI: 10.13465/j.cnki.jvs.2020.16.016.

    SUN N X, LEI M F, ZHANG Y L, et al. A study on the influence of weak interlayer on the propagation process of explosion stress wave [J]. Journal of Vibration and Shock, 2020, 39(16): 112–119, 147. DOI: 10.13465/j.cnki.jvs.2020.16.016.
    [8] 李夕兵. 论岩体软弱结构面对应力波传播的影响 [J]. 爆炸与冲击, 1993, 13(4): 334–342.

    LI X B. Influence of the structural weakness planes in rock mass on the propagation of stress waves [J]. Explosion and Shock Waves, 1993, 13(4): 334–342.
    [9] 李夕兵, 陈寿如. 应力波在层状矿岩结构中传播的新算法 [J]. 中南大学学报(自然科学版), 1993, 24(6): 738–742.

    LI X B, CHEN S R. A new method for investigating the propagation of stress waves through layered rockmass [J]. Journal of Central South University, 1993, 24(6): 738–742.
    [10] 李夕兵, 古德生, 赖海辉. 爆炸应力波遇夹层后的能量传递效果 [J]. 有色金属, 1993, 45(4): 1–6.

    LI X B, GU D S, LAI H H. Energy transmission effects of transient stress waves through sandwiches in rock mass [J]. Nonferrous Metals, 1993, 45(4): 1–6.
    [11] SCHOENBERG M. Elastic wave behavior across linear slip interfaces [J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1516–1521. DOI: 10.1121/1.385077.
    [12] PYRAK L J, MYER L R, COOK N G W. Anisotropy in seismic velocities and amplitudes from multiple parallel fractures [J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B7): 11345–11358. DOI: 10.1029/JB095iB07p11345.
    [13] SCHOENBERG M E, MUIR F. A calculus for finely layered anisotropic media [J]. Geophysics, 1989, 54(5): 581–589. DOI: 10.1190/1.1442685.
    [14] FAN L F, MA G W, LI J C. Nonlinear viscoelastic medium equivalence for stress wave propagation in a jointed rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 11–18. DOI: 10.1016/j.ijrmms.2011.12.008.
    [15] LI J C, MA G W, ZHAO J. An equivalent viscoelastic model for rock mass with parallel joints [J]. Journal of Geophysical Research: Space Physics, 2010, 115(B3): B03305. DOI: 10.1029/2008jb006241.
    [16] MA G W, FAN L F, LI J C. Evaluation of equivalent medium methods for stress wave propagation in jointed rock mass [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(7): 701–715. DOI: 10.1002/nag.1118.
    [17] 杨立云, 刘振坤, 周莹莹, 等. 爆炸应力波在含层理介质中传播规律的实验研究 [J]. 爆破, 2008, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.

    YANG L Y, LIU Z K, ZHOU Y Y, et al. Study on propagation law of explosive stress wave in layered media [J]. Blasting, 2008, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.
    [18] 杨仁树, 李炜煜, 方士正, 等. 层状复合岩体冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021.

    YANG R S, LI W Y, FANG S Z, et al. Experimental study on impact dynamic characteristics of layered composite rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021.
    [19] 包会云. 层状岩体应力波传播特性及震源定位研究[D]. 沈阳: 东北大学, 2015: 45−61.

    BAO H Y. Research on propagation characteristics of stress wave propagation in layered rock and vibration source localization [D]. Shenyang: Northeastern University, 2015: 45−61.
    [20] 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [21] 刘婷婷, 李新平, 李海波, 等. 应力波在充填节理岩体中传播规律的数值研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3552–3560. DOI: 10.13722/j.cnki.jrme.2016.0829.

    LIU T T, LI X P, LI H B, et al. Numerical study on stress wave propagation across filled joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3552–3560. DOI: 10.13722/j.cnki.jrme.2016.0829.
    [22] 李秀虎, 郭连军, 潘博, 等. 节理岩体爆破数值模拟研究 [J]. 辽宁科技大学学报, 2017, 40(5): 390–395. DOI: 10.13988/j.ustl.2017.05.013.

    LI X H, GUO L J, PAN B, et al. Numerical simulation of blasting in jointed rock mass [J]. Journal of University of Science and Technology Liaoning, 2017, 40(5): 390–395. DOI: 10.13988/j.ustl.2017.05.013.
    [23] 朱鹏瑞, 宋卫东, 曹帅, 等. 爆破动载下胶结充填体的张拉力学响应机制 [J]. 采矿与安全工程学报, 2018, 35(3): 605–611. DOI: 10.13545/j.cnki.jmse.2018.03.022.

    ZHU P R, SONG W D, CAO S, et al. Tensile mechanical response mechanism of cemented backfills under blasting load [J]. Journal of Mining and Safety Engineering, 2018, 35(3): 605–611. DOI: 10.13545/j.cnki.jmse.2018.03.022.
    [24] 刘志祥, 李夕兵. 爆破动载下高阶段充填体稳定性研究 [J]. 矿冶工程, 2004, 24(3): 21–24. DOI: 10.3969/j.issn.0253-6099.2004.03.007.

    LIU Z X, LI X B. Research on stability of high-level backfill in blasting [J]. Mining and Metallurgical Engineering, 2004, 24(3): 21–24. DOI: 10.3969/j.issn.0253-6099.2004.03.007.
    [25] 王振昌. 二步回采围岩和充填体爆破损伤特征及安全阈值研究[D]. 福州: 福州大学, 2018: 10−26.

    WANG Z C. Study on blasting damage characteristics and safety threshold of surrounding rock and backfill in two-step mining [D]. Fuzhou: Fuzhou University, 2018: 10−26.
    [26] 李化, 黄润秋. 岩石结构面粗糙度系数JRC定量确定方法研究 [J]. 岩石力学与工程学报, 2014, 33(S2): 3489–3497. DOI: 10.13722/j.cnki.jrme.2014.s2.012.

    LI H, HUANG R Q. Method of quantitative determination of joint roughness coefficient [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3489–3497. DOI: 10.13722/j.cnki.jrme.2014.s2.012.
    [27] 王岐. 用伸长率R确定岩石节理粗糙度系数的研究[C]//地下工程经验交流会论文选集. 甘肃: 中国岩石力学与工程学会, 1982: 355−360.

    WANG Q. Study on determining the roughness coefficient of rock joints with elongation R [C] // Gansu: Meeting on Underground Engineering Experience Sharing, 1982: 355−360.
    [28] 杜时贵, 陈禹, 樊良本. JRC修正直边法的数学表达 [J]. 工程地质学报, 1996, 4(2): 36–43.

    DU S G, CHEN Y, FAN L B. Mathematical expression of JRC modified straight edge [J]. Journal of Engineering Geology, 1996, 4(2): 36–43.
    [29] 段军, 常诗源, 张鹏飞, 等. 双利铁矿台阶爆破空气间隔长度研究与应用 [J]. 中国矿业, 2020, 29(6): 155–158. DOI: 10.12075/j.issn.1004-4051.2020.06.006.

    DUAN J, CHANG S Y, ZHANG P F, et al. Study and application of bench blasting interval length in Shuangli mine [J]. China Mining Magazine, 2020, 29(6): 155–158. DOI: 10.12075/j.issn.1004-4051.2020.06.006.
    [30] 曹杨. 中深孔台阶爆破模拟与研究[D]. 太原: 中北大学, 2012: 27−47.

    CAO Y. Simulation and research on the medium-length hole bench blasting [D]. Taiyuan: North University of China, 2012: 27−47.
    [31] 季京晨. 花岗岩物理力学性质与宏微观力学特性研究[D]. 安徽淮南: 安徽理工大学, 2019: 27−28.

    JI J C. Study on the physical and mechanical properties of the granite and the micro-mechanical properties of the macro [D]. Huainan, Anhui: Anhui University of Science and Technology, 2019: 27−28.
    [32] 刘永涛. 不同龄期尾砂胶结充填体单轴压缩破坏的声发射及断口分形特征[D]. 武汉: 武汉科技大学, 2018: 21−26.

    LIU Y T. Acoustic emission and fractal characteristics of cemented tailings backfill in different age under uniaxial compression [D]. Wuhan: Wuhan University of Science and Technology, 2018: 21−26.
    [33] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013: 24−25.

    CAI M F, HE M C, LIU D Y. Rock mechanics and engineering [M]. 2nd ed. Beijing: Science Press, 2013: 24−25.
  • 期刊类型引用(13)

    1. 吕晋贤,吴昊,卢永刚,陈德. 爆炸作用下建筑结构高效毁伤评估方法. 爆炸与冲击. 2025(01): 135-152 . 本站查看
    2. 陈公轻,吴昊,欧渊,王帆,吕晋贤. 内爆炸作用下含填充墙RC框架结构破坏分析. 振动与冲击. 2025(05): 289-301 . 百度学术
    3. 刘举,张国凯,王振,姚箭,李杰,于思远,纪玉国. 温压炸药近爆作用下RC梁破坏特征和毁伤规律试验研究. 兵工学报. 2024(03): 864-874 . 百度学术
    4. 院素静,宗周红,林津,潘亚豪. 接触爆炸下混凝土连续梁桥倒塌破坏试验. 中国公路学报. 2024(11): 139-151 . 百度学术
    5. 张亚洲,石广豪,贾鑫,黄正祥. 接触爆炸下全尺寸钢筋混凝土墙的毁伤特性研究. 兵工自动化. 2024(12): 55-61+79 . 百度学术
    6. 院素静,杨凯,刘泽瑞,宗周红. 近距离爆炸作用下RC桥墩毁伤模式及其轴力效应数值模拟. 东南大学学报(自然科学版). 2023(01): 76-85 . 百度学术
    7. Sujing Yuan,Yazhu Li,Zhouhong Zong,Minghong Li,Yajun Xia. A review on close-in blast performance of RC bridge columns. Journal of Traffic and Transportation Engineering(English Edition). 2023(04): 675-696 . 必应学术
    8. 陈昊,卢浩,孙善政,熊自明,岳松林,王德荣. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律. 爆炸与冲击. 2023(08): 155-167 . 本站查看
    9. 许迎亮,刘彦,闫俊伯,白帆,于浩,李旭,王虹富. 双装药同步爆炸钢筋混凝土梁毁伤效应. 兵工学报. 2023(12): 3719-3732 . 百度学术
    10. 唐泓,苏健军,翟红波,魏巍. 近场爆炸作用下简支钢筋混凝土梁冲剪破坏的预测方法. 兵器装备工程学报. 2022(02): 117-123 . 百度学术
    11. 唐泓,翟红波,苏健军,付腾. 近场爆炸下钢筋混凝土梁毁伤效应研究. 兵器装备工程学报. 2022(03): 196-201 . 百度学术
    12. 郝礼楷,顾文彬,邹绍昕,陈姮,刘森琪,阳恒. 空气中集团装药对混凝土墩接触爆炸毁伤研究. 兵器装备工程学报. 2022(05): 97-102 . 百度学术
    13. 赵卫坤,沈峰,夏益兵. 爆炸荷载下装配式钢筋混凝土梁动力响应及抗爆性能研究. 河北工程大学学报(自然科学版). 2022(04): 18-25 . 百度学术

    其他类型引用(11)

  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  365
  • PDF下载量:  82
  • 被引次数: 24
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-07-23
  • 刊出日期:  2021-08-05

目录

/

返回文章
返回