碳酸氢钠粉体对导管泄爆过程的影响

余明高 付元鹏 郑立刚 王玺 杨文 靳红旺

余明高, 付元鹏, 郑立刚, 王玺, 杨文, 靳红旺. 碳酸氢钠粉体对导管泄爆过程的影响[J]. 爆炸与冲击, 2021, 41(9): 095403. doi: 10.11883/bzycj-2020-0437
引用本文: 余明高, 付元鹏, 郑立刚, 王玺, 杨文, 靳红旺. 碳酸氢钠粉体对导管泄爆过程的影响[J]. 爆炸与冲击, 2021, 41(9): 095403. doi: 10.11883/bzycj-2020-0437
YU Minggao, FU Yuanpeng, ZHENG Ligang, WANG Xi, YANG Wen, JIN Hongwang. Effect of sodium bicarbonate powder on the process of ducted venting[J]. Explosion And Shock Waves, 2021, 41(9): 095403. doi: 10.11883/bzycj-2020-0437
Citation: YU Minggao, FU Yuanpeng, ZHENG Ligang, WANG Xi, YANG Wen, JIN Hongwang. Effect of sodium bicarbonate powder on the process of ducted venting[J]. Explosion And Shock Waves, 2021, 41(9): 095403. doi: 10.11883/bzycj-2020-0437

碳酸氢钠粉体对导管泄爆过程的影响

doi: 10.11883/bzycj-2020-0437
基金项目: 国家重点研发计划(2018YFC0808100);国家自然科学基金(51674104,51874120)
详细信息
    作者简介:

    余明高(1963- ),男,博士,教授,mg_yu@126.com

    通讯作者:

    郑立刚(1979- ),男,博士,教授,zhengligang97@163.com

  • 中图分类号: O389

Effect of sodium bicarbonate powder on the process of ducted venting

  • 摘要:

    为了研究惰性粉体对导管泄爆过程的影响,采用质量浓度C为0、40、80、120、160、200 、240 g/m3的碳酸氢钠(NaHCO3)粉体,分别抑制连接不同长度(250 mm、500 mm、750 mm)泄爆导管的5 L容器内甲烷/空气预混气爆炸。对火焰传播特性分析结果表明:容器内添加NaHCO3粉体可以极大地削弱导管内二次爆炸,且合适质量浓度的NaHCO3粉体可以消除二次爆炸。随着NaHCO3粉体质量浓度增加,容器内火焰结构逐渐不规则化,火焰到达容器末端时间延长,导管内火焰经历弱化到熄灭过程,不同质量浓度NaHCO3粉体导致3种火焰速度发展模式。对压力特性分析得知,导管内爆炸超压上升机理依赖于NaHCO3粉体质量浓度,粉体质量浓度较低时,容器中最大爆炸超压取决于二次爆炸产生的第二压力峰值,反之取决于火焰在容器触壁时产生的第一压力峰值。随着NaHCO3粉体质量浓度增加,超压峰值下降率先增加然后趋于稳定,表明质量浓度效应逐渐减弱。最后定量分析了导管-容器配置中火焰传播速度与爆炸超压的关系。

  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  NaHCO3粉体的粒度分布

    Figure  2.  Particle size distribution of NaHCO3 powder

    图  3  NaHCO3粉体的扫描电镜图

    Figure  3.  Scanning electron microscope of the NaHCO3 powder

    图  4  火焰锋面结构演化图

    Figure  4.  Evolution diagram of flame front structure

    图  5  火焰传播速度随位置变化关系

    Figure  5.  Flame propagation velocity changed with flame front position

    图  6  导管内最大火焰传播速度随NaHCO3质量浓度变化趋势

    Figure  6.  Maximum flame propagation velocity in the duct changed with NaHCO3 powder mass concentration

    图  7  火焰前锋到达容器末端时间与容器内平均火焰速度

    Figure  7.  Arrival time of flame front and average flame velocity in the vessel

    图  8  40和200 g/m3 NaHCO3作用下容器内超压变化历程

    Figure  8.  Pressure history in the vessel with 40 and 200 g/m3 NaHCO3

    图  9  容器内两压力峰值随粉体质量浓度的变化

    Figure  9.  Variation of two pressure peaks in the vessel with NaHCO3 mass concentration

    图  10  容器内最大超压峰值及下降率曲线

    Figure  10.  Dependence of maximum overpressure and its drop rate in the vessel on NaHCO3 powder mass concentration

    图  11  导管内最大超压与容器内平均火焰传播速度的关系

    Figure  11.  Maximum pressure in the duct pd,max vs average flame velocity in the vessel uf

    图  12  容器内最大爆炸超压与导管内最大爆炸超压的关系

    Figure  12.  Maximum pressure in the vessel pv,max vs maximum pressure in the duct pd,max

  • [1] 高康华, 赵天辉, 孙松, 等. 建筑物内气体爆炸效应简化计算研究综述 [J]. 爆炸与冲击, 2018, 38(2): 102101. DOI: 10.11883/bzycj-2016-0201.

    GAO K H, ZHAO T H, SUN S, et al. Simplified calculation methods of gaseous explosion effects in buildings [J]. Explosion and Shock Waves, 2018, 38(2): 102101. DOI: 10.11883/bzycj-2016-0201.
    [2] 李国庆, 张笈玮, 武军, 等. 方管内汽油-空气混合气体密闭爆炸和泄爆特性研究 [J]. 爆炸与冲击, 2020, 40(10): 102101. DOI: 10.11883/bzycj-2019-0416.

    LI G Q, ZHANG J W, WU J, et al. Characteristics of closed and vented explosions of gasoline-air mixture in a square tube [J]. Explosion and Shock Waves, 2020, 40(10): 102101. DOI: 10.11883/bzycj-2019-0416.
    [3] BENEDETTO A D, RUSSO P, SALZANO E. The design of duct venting of gas explosions [J]. Process Safety Progress, 2008, 27(2): 164–172. DOI: 10.1002/prs.10239.
    [4] SIWEK R. Explosion venting technology [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 81–90. DOI: 10.1016/0950-4230(95)00058-5.
    [5] 张庆武, 蒋军成, 喻源, 等. 基于支持向量机的导管泄爆容器压力峰值预测 [J]. 爆炸与冲击, 2014, 34(6): 748–753. DOI: 10.11883/1001-1455(2014)06-0748-06.

    ZHANG Q W, JIANG J C, YU Y, et al. Prediction of peak pressure in the explosion-vented vessel with a venting duct based on support vector machine [J]. Explosion and Shock Waves, 2014, 34(6): 748–753. DOI: 10.11883/1001-1455(2014)06-0748-06.
    [6] FERRARA G, BENEDETTO A D, SALZANO E, et al. CFD analysis of gas explosions vented through relief pipes [J]. Journal of Hazardous Materials, 2006, 137(2): 654–665. DOI: 10.1016/j.jhazmat.2006.03.037.
    [7] PONIZ B, LEYER J C. Flame dynamics in a vented vessel connected to a duct: 2. Influence of ignition site, membrane rupture, and turbulence [J]. Combustion and Fame, 1999, 116(1): 272–281. DOI: 10.1016/S0010-2180(98)00039-X.
    [8] 叶经方, 姜孝海, 贾正望, 等. 泄爆诱导二次爆炸的实验研究 [J]. 爆炸与冲击, 2004, 24(4): 356–362.

    YE J F, JIANG X H, JIA Z W, et al. Experimental investigations of external second-explosion induced by vented explosion [J]. Explosion and Shock Waves, 2004, 24(4): 356–362.
    [9] 范宝春, 姜孝海. 高压泄爆导致的二次爆炸 [J]. 爆炸与冲击, 2005, 25(1): 11–16.

    FAN B C, JIANG X H. Secondary explosion induced by vented explosion [J]. Explosion and Shock Waves, 2005, 25(1): 11–16.
    [10] 姜孝海, 范宝春, 叶经方, 等. 泄爆过程中二次爆炸的动力学机理研究 [J]. 力学学报, 2005(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.

    JIANG X H, FAN B C, YE J F, et al. Dynamics in external secondary explosion during venting [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005(4): 442–450. DOI: 10.3321/j.issn:0459-1879.2005.04.009.
    [11] 喻健良, 闫兴清, 李迪. 采用泄爆管的粉尘爆炸在泄放过程中的压力特性 [J]. 爆炸与冲击, 2012, 32(6): 669–672. DOI: 10.11883/1001-1455(2012)06-0669-04.

    YU J L, YAN X Q, LI D. Pressure characteristics in dust explosion relief process by using a relief pipe [J]. Explosion and Shock Waves, 2012, 32(6): 669–672. DOI: 10.11883/1001-1455(2012)06-0669-04.
    [12] 王志荣, 蒋军成, 周超. 连通装置气体爆炸特性实验 [J]. 爆炸与冲击, 2011, 31(1): 69–74. DOI: 10.11883/1001-1455(2011)01-0069-06.

    WANG Z R, JIANG J C, ZHOU C. Experimental investigation of gas explosion characteristic in linked vessels [J]. Explosion and Shock Waves, 2011, 31(1): 69–74. DOI: 10.11883/1001-1455(2011)01-0069-06.
    [13] HENNETON N, PONIZY B, VEYSSIERE B. Control of flame transmission from a vessel to a discharge duct [J]. Combustion Science and Technology, 2006, 178(10−11): 1803–1819. DOI: 10.1080/00102200600790722.
    [14] MAKAROV D, VERBECKE F, MOLKOV V. Numerical analysis of hydrogen deflagration mitigation by venting through a duct [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4−6): 433–438. DOI: 10.1016/j.jlp.2007.04.022.
    [15] PONIZY B, HENNETON N, CLAVERIE A, et al. Detailed investigation of flame transmission from a vessel to a discharge duct [J]. Combustion and Flame, 2014, 161(5): 1348–1364. DOI: 10.1016/j.combustflame.2013.11.006.
    [16] FERRARA G, WILLACY S K, PHYLAKTOU H N, et al. Venting of gas explosion through relief ducts: Interaction between internal and external explosions [J]. Journal of Hazardous Materials, 2008, 155(1−2): 358–368. DOI: 10.1016/j.jhazmat.2007.11.077.
    [17] 范宝春, 李鸿志. 惰性颗粒抑爆过程的数值模拟 [J]. 爆炸与冲击, 2000, 20(3): 208–214.

    FAN B C, LI H Z. Numerical simulations of explosion suppression by inert particle [J]. Explosion and Shock Waves, 2000, 20(3): 208–214.
    [18] 陈曦, 陈先锋, 张洪铭, 等. 惰化剂粒径对铝粉火焰传播特性影响的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.

    CHEN X, CHEN X F, ZHANG H M, et al. Effects of inerting agent with different particle sizes on the flame propagation of aluminum dust [J]. Explosion and Shock Waves, 2017, 37(4): 759–765. DOI: 10.11883/1001-1455(2017)04-0759-07.
    [19] 王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸 [J]. 化工学报, 2015, 66(12): 5171–5178. DOI: 10.11949/j.issn.0438-1157.20141869.

    WANG X Q, WANG T, XU H S, et al. Modification of commercial BC dry chemical powder suppressant and experiments on suppression of methane-air explosion [J]. Journal of Chemical Industry and Engineering, 2015, 66(12): 5171–5178. DOI: 10.11949/j.issn.0438-1157.20141869.
    [20] JIANG H P, BI M S, PENG Q K, et al. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2046–2055. DOI: 10.1016/j.renene.2019.10.026.
    [21] IBRAHIM S S, MASRI A R. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3): 213–221. DOI: 10.1016/S0950-4230(00)00024-3.
    [22] 陈东梁, 孙金华, 刘义, 等. 甲烷/空气预混气体火焰的传播特征 [J]. 爆炸与冲击, 2008, 28(5): 385–390. DOI: 10.11883/1001-1455(2008)05-0385-06.

    CHEN D L, SUN J H, LIU Y et al. Propagation characteristics of premixed methane-air flames [J]. Explosion and Shock Waves, 2008, 28(5): 385–390. DOI: 10.11883/1001-1455(2008)05-0385-06.
    [23] 靳红旺, 郑立刚, 朱小超, 等. 竖直管道中氧化铝抑制铝粉爆炸特性研究 [J]. 化工学报, 2020, 71(4): 1929–1939. DOI: 10.11949/0438-1157.20190620.

    JIN H W, ZHENG L G, ZHU X C, et al. Inhibition effect of alumina on aluminum powder explosion characteristics in vertical duct [J]. Journal of Chemical Industry and Engineering, 2020, 71(4): 1929–1939. DOI: 10.11949/0438-1157.20190620.
    [24] 杨艺, 何学秋, 刘建章, 等. 瓦斯爆燃火焰内部流场分形特性研究 [J]. 爆炸与冲击, 2004, 24(1): 30–36.

    YANG Y, HE X Q, LIU J Z, et al. Fractal characteristics of flame inner flow field in methane/air explosion [J]. Explosion and Shock Waves, 2004, 24(1): 30–36.
    [25] CHRISTOPHE P, RIM B M, MOHAMED G, et al. Thermal radiation in dust flame propagation [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 896–904. DOI: 10.1016/j.jlp.2017.01.002.
    [26] KASMANI R M, ANDREWS G E, PHYLAKTOU H N. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct [J]. Process Safety and Environmental Protection, 2013, 91(4): 245–252. DOI: 10.1016/j.psep.2012.05.006.
    [27] 郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析 [J]. 化工学报, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.

    ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. Journal of Chemical Industry and Engineering, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.
    [28] RANGANATHAN S, ROCKWELL S R, PETROWD, et al. Radiative fraction of dust entrained turbulent premixed flames [J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 65–71. DOI: 10.1016/j.jlp.2017.11.009.
    [29] YAN X Q, YU J L. Overpressure characteristics of aluminium dust explosion vented through a relief pipe [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 676–682. DOI: 10.1016/j.jlp.2013.01.003.
  • 加载中
图(12)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  210
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2020-12-25
  • 网络出版日期:  2021-08-30
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回