考虑高温影响的钢管混凝土柱抗爆性能研究

胡文伟 王蕊 赵晖 张力

胡文伟, 王蕊, 赵晖, 张力. 考虑高温影响的钢管混凝土柱抗爆性能研究[J]. 爆炸与冲击, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444
引用本文: 胡文伟, 王蕊, 赵晖, 张力. 考虑高温影响的钢管混凝土柱抗爆性能研究[J]. 爆炸与冲击, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444
HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures[J]. Explosion And Shock Waves, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444
Citation: HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures[J]. Explosion And Shock Waves, 2021, 41(11): 113102. doi: 10.11883/bzycj-2020-0444

考虑高温影响的钢管混凝土柱抗爆性能研究

doi: 10.11883/bzycj-2020-0444
基金项目: 中国博士后科学基金(2020M670656);
详细信息
    作者简介:

    胡文伟(1998- ),男,硕士研究生,huwenwei00@163.com

    通讯作者:

    赵 晖(1988- ),男,博士,副教授,zhaohui01@tyut.edu.cn

  • 中图分类号: O383; TU398.9

Study on explosion-resistance performance of concrete-filled steel tubular columns considering the influence of elevated temperatures

  • 摘要: 火灾与爆炸通常相伴发生,对工程结构安全造成了严重威胁。为研究高温下钢管混凝土柱抗爆性能,采用ABAQUS有限元软件建立了ISO 834标准火灾作用下钢管混凝土柱抗爆模型。在验证有限元模型可靠性基础上,首先分析了标准火灾作用下钢管混凝土柱抗爆工作机理;其次重点研究了受火时间、材料强度、含钢率以及爆炸当量对构件在标准火灾下抗爆性能的影响。研究结果表明:火灾作用下两端固结的钢管混凝土柱受爆炸荷载时,柱两端首先发生剪切破坏,随后整体发生受弯破坏;随着受火时间增加,钢管耗能占比降低,混凝土塑性变形逐渐成为主要耗能机制;混凝土强度、爆炸当量与轴压比对钢管混凝土柱高温下抗爆性能影响明显,当混凝土立方体抗压强度从30 MPa增加到50 MPa,常温与受火90 min构件抗爆性能分别提高约21%与42%。
  • 图  1  爆炸冲击波曲线

    Figure  1.  Explosion shock wave

    图  2  ConWep模型的冲击波曲线

    Figure  2.  Explosion shock wave in ConWep model

    图  3  高温-爆炸耦合分析过程

    Figure  3.  Process of coupled temperature-blast analysis

    图  4  试验值与模拟值对比

    Figure  4.  Comparison between test and FE results

    图  5  温度时程曲线

    Figure  5.  Temperature-time curves

    图  6  温度场分布

    Figure  6.  Temperature distribution

    图  7  跨中挠度(Δ)时程曲线

    Figure  7.  Mid-span deflection (Δ) curves

    图  8  钢管与混凝土塑性应变(3倍变形)

    Figure  8.  Plastic strain of steel tube and concrete (displacement×3)

    图  9  全过程曲线

    Figure  9.  Full-range curves

    图  10  钢管跨中截面Mise应力-纵向应变曲线

    Figure  10.  Mises stress-longitudinal strain curves of steel tube at mid-span

    图  11  跨中截面混凝土纵向应力变化

    Figure  11.  Longitudinal stress changes of concrete at mid-span

    图  12  混凝土与钢管之间的接触应力

    Figure  12.  Contact stress between concrete and steel tube

    图  13  部件耗能曲线与占比

    Figure  13.  Energy dissipation curves and proportions of each components

    图  14  受火t0时间的影响

    Figure  14.  Effect of fire duration (t0)

    图  15  爆炸当量(W)的影响

    Figure  15.  Effect of explosion equivalent (W)

    图  16  材料强度的影响

    Figure  16.  Effect of material strength

    图  17  钢材含钢率α的影响

    Figure  17.  Effect of steel ratio (α)

    图  18  轴压比(n)的影响

    Figure  18.  Effect of axial load ratio (n)

    表  1  高温下钢材力学性能指标折减系数[11]

    Table  1.   Reduction coefficient of mechanical properties of steel under various temperatures[11]

    温度/℃Es(T)/Es0fy(T)/fy0fp(T)/fy0温度/℃Es(T)/Es0fy(T)/fy0fp(T)/fy0温度/℃Es(T)/Es0fy(T)/fy0fp(T)/fy0
    201.0001.0001.0005000.6000.7800.36010000.0450.0400.025
    1001.0001.0001.0006000.3100.4700.18011000.0230.0200.013
    2000.9001.0000.8077000.1300.2300.07512000.0000.0000.000
    3000.8001.0000.6138000.0900.1100.050
    4000.7001.0000.4209000.0670.0600.038    
     注:表中Es0fy0fp0分别为钢材在常温下的弹性模量、屈服强度与比例极限。
    下载: 导出CSV

    表  2  试验与模拟位移比值

    Table  2.   Ratio of experimental to numerical deformation

    试件位移/mm模拟值/试验值
    模拟值 试验值
    S2 27.9 25.21.11
    S10136.5119.91.14
    13-T1-5CF180.7173.11.04
    13-T2-5CF251.5279.00.90
    下载: 导出CSV

    表  3  典型构件详细参数

    Table  3.   Detailed parameters of typical specimens

    构件编号W/kgR/mZ/(m·kg−1/3t0/min
    F-0050040.50
    F-3030
    F-6060
    F-9090
     注:W为爆炸当量;R为物体与爆心的距离;Z为比例距离;t0为受火时间。
    下载: 导出CSV
  • [1] SONG L, IZZUDDIN B A, ELNASHAI A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames: Part I: analytical models [J]. Journal of Constructional Steel Research, 2000, 53(1): 63–85. DOI: 10.1016/S0143-974X(99)00040-1.
    [2] IZZUDDIN B A, SONG L, ELNASHAI A S, et al. An integrated adaptive environment for fire and explosion analysis of steel frames: Part II: verification and application [J]. Journal of Constructional Steel Research, 2000, 53(1): 87–111. DOI: 10.1016/S0143-974X(99)00041-3.
    [3] LIEW J Y R, CHEN H. Explosion and fire analysis of steel frames using fiber element approach [J]. Journal of Structural Engineering, 2004, 130(7): 991–1000. DOI: 10.1061/(ASCE)0733-9445(2004)130:7(991).
    [4] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
    [5] 方秦, 赵建魁, 陈力. 爆炸与火荷载联合作用下钢梁耐火极限的数值分析 [J]. 土木工程学报, 2010, 43(S2): 62–68. DOI: 10.15951/j.tmgcxb.2010.s2.031.

    FANG Q, ZHAO J K, CHEN L. Numerical simulation of fire resistance of steel beams subjected to blast and fire [J]. China Civil Engineering Journal, 2010, 43(S2): 62–68. DOI: 10.15951/j.tmgcxb.2010.s2.031.
    [6] 赵建魁, 方秦, 陈力, 等. 爆炸与火荷载联合作用下RC梁耐火极限的数值分析 [J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 873–880. DOI: 10.11784/tdxbz201312027.

    ZHAO J K, FANG Q, CHEN L, et al. Numerical analysis of fire resistance of RC beams subjected to explosion and fire load [J]. Journal of Tianjin University (Science and Technology), 2015, 48(10): 873–880. DOI: 10.11784/tdxbz201312027.
    [7] ZHAI C C, CHEN L, XIANG H B, et al. Experimental and numerical investigation into RC beams subjected to blast after exposure to fire [J]. International Journal of Impact Engineering, 2016, 97: 29–45. DOI: 10.1016/j.ijimpeng.2016.06.004.
    [8] 陈万祥, 郭志昆, 邹慧辉, 等. 标准火灾后钢管RPC柱抗近距离爆炸荷载的试验研究 [J]. 工程力学, 2017, 34(1): 180–191. DOI: 10.6052/j.issn.1000-4750.2015.07.0537.

    CHEN W X, GUO Z K, ZOU H H, et al. Near-field blast-resistant test of reactive powder concrete filled steel tubular column after exposure to standard fire [J]. Engineering Mechanics, 2017, 34(1): 180–191. DOI: 10.6052/j.issn.1000-4750.2015.07.0537.
    [9] 邹慧辉, 陈万祥, 郭志昆, 等. 火灾后钢管RPC柱抗爆动力响应数值模拟研究 [J]. 振动与冲击, 2019, 38(21): 155–163,171. DOI: 10.13465/j.cnki.jvs.2019.21.022.

    ZOU H H, CHEN W X, GUO Z K, et al. Numerical simulation for anti-blast dynamic response of fire-damaged RPC-filled steel tube columns [J]. Journal of Vibration and Shock, 2019, 38(21): 155–163,171. DOI: 10.13465/j.cnki.jvs.2019.21.022.
    [10] RUAN Z, CHEN L, FANG Q. Numerical investigation into dynamic responses of RC columns subjected for fire and blast [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 10–21. DOI: 10.1016/j.jlp.2015.01.009.
    [11] British Standard Institution. Design of steel structures: part 1−2: general rules-structural fire design: EN 1993-1-2: 2005 [S]. London: British Standard Institution, 2005.
    [12] LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10.1061/(ASCE)0733-9445(1996)122:1(30).
    [13] HONG S, VARMA A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Constructional Steel Research, 2009, 65(1): 54–69. DOI: 10.1016/j.jcsr.2008.04.008.
    [14] LI M H, ZONG Z H, LIU L, et al. Experimental and numerical study on damage mechanism of CFDST bridge columns subjected to contact explosion [J]. Engineering Structures, 2018, 159: 265–276. DOI: 10.1016/j.engstruct.2018.01.006.
    [15] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [16] 刘发起. 三面受火的矩形钢管混凝土柱抗火性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010. DOI: 10.7666/d.D264694.

    LIU F Q. Fire resistance of concrete filled RHS columns under three-surface fire loading [D]. Harbin: Harbin Institute of Technology, 2010. DOI: 10.7666/d.D264694.
    [17] 韩林海. 钢管混凝土结构——理论与实践 [M]. 3版. 北京: 科学出版社, 2016.

    HAN L H. Concrete filled steel tubular structures—theory and practice [M]. 3rd ed. Beijing: Science Press, 2016.
    [18] DING J, WANG Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire [J]. Journal of Constructional Steel Research, 2008, 64(10): 1086–1092. DOI: 10.1016/j.jcsr.2007.09.014.
    [19] 李国强, 瞿海雁, 杨涛春, 等. 钢管混凝土柱抗爆性能试验研究 [J]. 建筑结构学报, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.

    LI G Q, QU H Y, YANG T C, et al. Experimental study of concrete-filled steel tubular columns under blast loading [J]. Journal of Building Structures, 2013, 34(12): 69–76. DOI: 10.14006/j.jzjgxb.2013.12.010.
    [20] RITCHIE C B, PACKER J A, SEICA M V et al. Behaviour and analysis of concrete-filled rectangular hollow sections subject to blast loading [J]. Journal of Constructional Steel Research, 2018, 147: 340–359. DOI: 10.1016/j.jcsr.2018.04.027.
    [21] ALBRIFKANI S, WANG Y C. Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire [J]. Engineering Structures, 2016, 121: 97–119. DOI: 10.1016/j.engstruct.2016.04.032.
    [22] WANG R, HAN L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279–295. DOI: 10.1016/j.tws.2015.09.009.
    [23] ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 106380. DOI: 10.1016/j.tws.2019.106380.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  243
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回