Influences of adiabatic index γ on the parameters of different complex wave zones in a planar detonation
-
摘要: 爆炸气体产物冲击膨胀过程中会形成多种复合波区,当爆炸气体绝热指数γ不同时其波区衰减特性差异较大。为研究不同γ条件下(γ>3,γ=3,γ<3)复合波区的特性差异,基于特征线法,对一平面爆轰过程中不同复合波区的波系相交特性进行了规律分析,并利用MATLAB对该平面爆轰过程进行流场模拟,验证并分析了不同复合波区流场内的参数变化特性。对比发现,γ不同时复合波区衰减特性的差异主要体现在与质点速度和气体声速相关的u-c平面特性上,其中在两中心稀疏波相交的复合波区,其差异还体现当γ≠3时相交的中心稀疏波不再具有中心发散特性。对爆炸过程中各波区特性的分析可为全面了解各特征参数的衰减规律提供参考。Abstract: A variety of complex wave zones are formed during the impact and expansion of explosive gas products. When the adiabatic index γ of explosive gas is different, the attenuation characteristics of the wave zones are quite different. In order to understand the characteristics of the complex wave zone under the different γ conditions (γ>3, γ=3, γ<3), the intersection characteristics of different complex wave zones in a planar detonation were analyzed based on the characteristic line method. The flow field in the planar detonation was simulated by MATLAB to verify and analyze the parameter change characteristics of the flow fields in the different complex wave zones. Comparisons display that the differences in the attenuation characteristics of the wave zones are mainly reflected in the differences in the u-c plane characteristics related to the particle velocity and the gas sound velocity. Among them, in the complex wave zone where two rarefaction waves intersect, the difference is also reflected in that when γ≠3, the rarefaction wave no longer has the characteristic of central divergence. The analysis result on the characteristics of each wave zone in the explosion process provides a reference for comprehensively understanding the attenuation of each characteristic parameter.
-
表 1 阶段1各区域的状态参量
Table 1. Characteristic parameters of each region in stage 1
区域 压力p/
MPa密度ρ/
(kg·m−3)质点速度u/
(m·s−1)气体声速c/
(m·s−1)绝热指数γ ③区 9130.8 1630 0 3 620.500 2.34 ④区 介于③区和②区之间,参数按中心稀疏波规律衰减 2.34 ②区 28.29 138.05 4 730.127 692.510 2.34 ①区 28.29 7.20 4 730.127 2 345.567 1.40 ⓪区 0.101 1.225 0 340.294 1.40 -
[1] 杨科之, 刘盛. 空气冲击波传播和衰减研究进展 [J]. 防护工程, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001.YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast [J]. Protective Engineering, 2020, 42(3): 1–10. DOI: 10.3969/j.issn.1674-1854.2020.03.001. [2] KAHALI S, TOWNSEND M, NGUYEN M M, et al. The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model [J]. PLoS ONE, 2020, 15(1): e0227125. DOI: 10.1371/journal.pone.0227125. [3] 徐春光, 白晓征, 刘瑜, 等. 爆炸激波管管口稀疏波对试验段的影响 [J]. 国防科技大学学报, 2011, 33(4): 1–5. DOI: 10.3969/j.issn.1001-2486.2011.04.001.XU C G, BAI X Z, LIU Y, et al. Research on the influence of rarefaction wave to the experimental section in blast shock tube [J]. Journal of National University of Defense Technology, 2011, 33(4): 1–5. DOI: 10.3969/j.issn.1001-2486.2011.04.001. [4] 北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用: 上册: 气体动力学基础和爆轰理论[M]. 北京: 国防工业出版社, 1979: 189−193. [5] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993: 120−126. [6] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282. DOI: 10.11858/gywlxb.2009.04.007.ZHAO Z, TAO G, DU Z X. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282. DOI: 10.11858/gywlxb.2009.04.007. [7] 王成, 徐文龙, 郭宇飞. 基于基因遗传算法和γ律状态方程的JWL状态方程参数计算 [J]. 兵工学报, 2017, 38(S1): 167–173.WANG C, XU W L, GUO X F. Calculation of JWL equation of state parameters based on genetic algorithm and γ equation of state [J]. Acta Armamentarii, 2017, 38(S1): 167–173. [8] TRZCIŃSKI W A, CUDZIO S. Characteristics of high explosives obtained from cylinder test data [J]. Chinese Journal of Energetic Materials, 2006, 14(1): 1–7. [9] 刘文祥, 李捷, 钟方平. 组合γ状态方程在数值计算上的应用及分析 [J]. 爆炸与冲击, 2009, 29(2): 209–212. DOI: 10.11883/1001-1455(2009)02-0209-04.LIU W X, LI J, ZHONG F P. Application and analysis of a combinational γ equation of state for detonation products [J]. Explosion and Shock Waves, 2009, 29(2): 209–212. DOI: 10.11883/1001-1455(2009)02-0209-04. [10] 徐维铮, 吴卫国. JWL状态方程及其等效多方状态方程在内爆炸计算中的应用分析 [J]. 中国舰船研究, 2019, 14(3): 83–91. DOI: 10.19693/j.issn.1673-3185.01328.XU W Z, WU W G. Application analysis of JWL EOS and the equivalent polytropic EOS in internal explosion calculation [J]. Chinese Journal of Ship Research, 2019, 14(3): 83–91. DOI: 10.19693/j.issn.1673-3185.01328. [11] 恽寿榕, 赵衡阳. 爆炸力学[M]. 北京: 国防工业出版社, 2005: 31−34. [12] 张连玉. 爆炸气体动力学基础[M]. 北京: 北京工业学院出版社, 1987: 220−222.