基于ALE方法的航行体高速入水缓冲降载性能数值研究

魏海鹏 史崇镔 孙铁志 鲍文春 张桂勇

魏海鹏, 史崇镔, 孙铁志, 鲍文春, 张桂勇. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461
引用本文: 魏海鹏, 史崇镔, 孙铁志, 鲍文春, 张桂勇. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461
WEI Haipeng, SHI Chongbin, SUN Tiezhi, BAO Wenchun, ZHANG Guiyong. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion And Shock Waves, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461
Citation: WEI Haipeng, SHI Chongbin, SUN Tiezhi, BAO Wenchun, ZHANG Guiyong. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion And Shock Waves, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461

基于ALE方法的航行体高速入水缓冲降载性能数值研究

doi: 10.11883/bzycj-2020-0461
基金项目: 国家自然科学基金(52071062);中国博士后科学基金(2019T120211);辽宁省自然科学基金(2020MS106);辽宁省兴辽英才计划项目(XLYC1908027);中央高校基本科研业务费专项资金(DUT20TD108,DUT20LAB308)
详细信息
    作者简介:

    魏海鹏(1982- ),男,博士,研究员,weihaipeng1982@163.com

    通讯作者:

    孙铁志(1986- ),男,博士,副教授,suntiezhi@dlut.edu.cn

  • 中图分类号: O352

Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method

  • 摘要: 针对航行体高速入水过程中的降载问题,设计了缓冲组件模型,并采用有限元任意拉格朗日-欧拉(ALE)的流固耦合方法,建立精确数值计算模型,对安装缓冲组件的航行体高速入水问题进行数值计算分析,获得入水过程中缓冲罩壳与缓冲泡沫的动态破坏过程及航行体运动参数,从而分析不同缓冲方案的缓冲性能。结果表明已设计的缓冲组件在航行体入水时能够吸收一定的冲击能量发生破坏并及时脱离航行体,同时缓冲泡沫的分层设计改变了缓冲罩壳的破坏方式,使罩壳破坏时间提前;撞水时在罩壳的头部与预设沟槽处会出现明显的应力集中,并且罩壳的沟槽设计能有效的引导其破坏形态,分层后的缓冲泡沫不易完全破坏,出现了二次缓冲的现象;缓冲组件使航行体入水速度曲线变化更加平缓,相同时间内航行体位移更大,分层缓冲泡沫方案降载率可达73.2%,缓冲效果较单层泡沫方案更好。
  • 图  1  航行体模型示意图

    Figure  1.  Schematic diagram of the vehicle

    图  2  缓冲罩壳模型

    Figure  2.  A buffer cover model

    图  3  局部网格划分示意图

    Figure  3.  Part of the finite element mesh

    图  4  材料破坏模型验证

    Figure  4.  Validation of the material failure model

    图  5  数值计算模型验证

    Figure  5.  Validation of the numerical calculation model

    图  6  工况2入水流场演化与破坏过程

    Figure  6.  Flow field evolution and destroyed process in case 2

    图  7  工况3入水流场演化与破坏过程

    Figure  7.  Flow field evolution and destroyed process in case 3

    图  8  工况2罩壳应力云图与破坏过程

    Figure  8.  Stress cloud of the nose cap and destroyed process in case 2

    图  9  工况3罩壳应力云图与破坏过程

    Figure  9.  Stress cloud of the nose cap and destroyed process in case 3

    图  10  工况2泡沫应力云图与破坏过程

    Figure  10.  Stress cloud of the foam and destroyed process in case 2

    图  11  工况3泡沫应力云图与破坏过程

    Figure  11.  Stress cloud of the foam and destroyed process in case 3

    图  12  工况2泡沫内部应力云图与破坏过程

    Figure  12.  Stress cloud of the inside foam and destroyed process in case 2

    图  13  工况3泡沫应力云图与破坏过程

    Figure  13.  Stress cloud of the inside foam and destroyed process in case 3

    图  14  特征时刻散点图

    Figure  14.  Scatter plot of characteristic moments

    图  15  不同工况下航行体的位移-时间曲线

    Figure  15.  Displacement-time curves of the vehicle in different cases

    图  16  不同工况下航行体的速度-时间曲线

    Figure  16.  Velocity-time curves of the vehicle in dfferent cases

    图  17  不同工况下航行体的加速度-时间曲线

    Figure  17.  Acceleration-time curves of the vehicle in different cases

    图  18  降载率对比

    Figure  18.  Comparison of load reduction ratios

    表  1  水状态方程参数

    Table  1.   Equation-of-state parameters for water

    c/(m·s−1S1S2γ0Ew0Vw0
    1647 1.921−0.0960.3500
    下载: 导出CSV

    表  2  聚甲基丙烯酰亚胺泡沫(PMI)材料参数

    Table  2.   Material parameters of polymethacrylimide (PMI) foam

    材料编号密度/(kg·m−3抗压强度/MPa剪切强度/MPa拉伸膜量/MPa
    71WF711.71.3105
    110WF1103.62.4180
    200WF2059.05.0350
    下载: 导出CSV

    表  3  工况

    Table  3.   Simulation cases

    工况速度/(m·s−1罩壳缓冲泡沫
    1150无罩壳无泡沫
    2150有罩壳单层泡沫(71WF)
    3150有罩壳三层泡沫(内层71WF,中层110WF,外层200WF)
    下载: 导出CSV
  • [1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [2] 潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.

    PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
    [3] 石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析 [J]. 舰船科学技术, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.

    SHI H C, JIANG P, CHENG J F. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape [J]. Ship Science and Technology, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.
    [4] SHARKER S I, HOLEKAMP S, MANSOOR M M, et al. Water entry impact dynamics of diving birds [J]. Bioinspiration and Biomimetics, 2019, 14(5): 056013. DOI: 10.1088/1748-3190/ab38cc.
    [5] SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [6] 张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究 [J]. 中国舰船研究, 2007, 2(5): 30–32, 41. DOI: 10.3969/j.issn.1673-3185.2007.05.007.

    ZHANG X G, BIAN J Y, FANG S W. Water impact load calculation and buffering design of Д type cylinder structure at large angle [J]. Chinese Journal of Ship Research, 2007, 2(5): 30–32, 41. DOI: 10.3969/j.issn.1673-3185.2007.05.007.
    [7] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [8] SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil [J]. Ocean Engineering, 2020, 197: 106831. DOI: 10.1016/j.oceaneng.2019.106831.
    [9] HOWARD E A. Protective nose cap for torpedoes: U. S. Patent 2889772 [P]. Washington, DC: U. S. Patent and Trademark Office, 1959.
    [10] 宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究 [J]. 鱼雷技术, 1999, 7(2): 41–46.

    XUAN J M, SONG Z P, YAN Z H. Experimental study on disintegration of torpedo nose cap during water entry [J]. Torpedo Technology, 1999, 7(2): 41–46.
    [11] 钱立新, 刘飞, 屈明, 等. 鱼雷头罩入水破坏模式研究 [J]. 鱼雷技术, 2015, 23(4): 257–261.

    QIAN L X, LIU F, QU M, et al. Failure mode of torpedo nose cap in water-entry [J]. Torpedo Technology, 2015, 23(4): 257–261.
    [12] SHI Y, GAO X F, PAN G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry [J]. Ocean Engineering, 2019, 181: 314–329. DOI: 10.1016/j.oceaneng.2019.03.062.
    [13] LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
    [14] 魏洪亮, 赵静, 徐志程, 等. 基于流固耦合的航行体高速入水规律研究 [J]. 导弹与航天运载技术, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.

    WEI H L, ZHAO J, XU Z C, et al. Study on high-speed water entry law of trans-media vehicle based on fluid solid coupling [J]. Missiles and Space Vehicles, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
    [15] 曲春艳, 谢克磊, 马瑛剑, 等. 聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征 [J]. 材料工程, 2008(11): 19–23. DOI: 10.3969/j.issn.1001-4381.2008.11.005.

    QU C Y, XIE K L, MA Y J, et al. Preparation and characterization of polymethacrylimide foams [J]. Journal of Materials Engineering, 2008(11): 19–23. DOI: 10.3969/j.issn.1001-4381.2008.11.005.
    [16] 杨洋, 陈新文, 王翔, 等. 聚甲基丙烯酰亚胺泡沫平面断裂韧性实验研究 [J]. 科技与创新, 2021(4): 12–14. DOI: 10.15913/j.cnki.kjycx.2021.04.005.

    YANG Y, CHEN X W, WANG X, et al. Experimental study on plane fracture toughness of PMI foam [J]. Science and Technology & Innovation, 2021(4): 12–14. DOI: 10.15913/j.cnki.kjycx.2021.04.005.
    [17] CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  286
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-03-23
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回