延性金属层裂自由面速度曲线特征多尺度模拟研究

王云天 曾祥国 陈华燕 杨鑫 王放 祁忠鹏

王云天, 曾祥国, 陈华燕, 杨鑫, 王放, 祁忠鹏. 延性金属层裂自由面速度曲线特征多尺度模拟研究[J]. 爆炸与冲击, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467
引用本文: 王云天, 曾祥国, 陈华燕, 杨鑫, 王放, 祁忠鹏. 延性金属层裂自由面速度曲线特征多尺度模拟研究[J]. 爆炸与冲击, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467
WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467
Citation: WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467

延性金属层裂自由面速度曲线特征多尺度模拟研究

doi: 10.11883/bzycj-2020-0467
基金项目: 北京应用物理与计算数学研究所计算物理重点实验室基金(Hxo2020-74)
详细信息
    作者简介:

    王云天(1989- ),男,博士研究生,iswangyt@163.com

    通讯作者:

    曾祥国(1960- ),男,博士,教授,博士生导师,xiangguozeng@scu.edu.cn

  • 中图分类号: O382.3

Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation

  • 摘要: 以延性金属钽为研究对象,对钽在平板撞击下的层裂行为进行了多尺度下的数值模拟研究,从微观视角对自由面速度曲线上的典型特征进行了新的解读。在宏观尺度,对比分析了光滑粒子流体动力学法(smootfied particle hydrodynamics, SPH)与Lagrange网格法以及几种本构模型的模拟结果及其适用性。通过与实验数据的对比表明,Steinberg-Cochran-Guinan本构模型在层裂模拟中与实验数据吻合较好,通过改变加载条件获得了不同应变率下的自由面速度曲线,分析了不同应变率下的自由面速度曲线中的典型特征。在微观尺度,采用分子动力学方法获得层裂区域内损伤演化情况,揭示了宏观尺度自由面速度曲线典型特征所蕴含的物理内涵。分析表明,层裂表现为材料内部微孔洞形核、长大和聚集的损伤演化过程,自由面速度曲线上的典型特征与层裂区域的损伤演化过程存在密切关联。Pullback信号是层裂区域内微孔洞形核的宏观表征;自由面速度曲线的下降幅值在一定程度上反映了微孔洞的形核条件,由此计算得到的层裂强度实际上是微孔洞的形核强度。此外,Pullback信号后的速度回跳速率反映了微损伤演化的速率。
  • 图  1  平板撞击实验原理及自由面速度曲线示意图

    Figure  1.  The principle of the flat plate impact experiment and a schematic diagram of a typical free-surface velocity curve

    图  2  多尺度模拟模型示意图

    Figure  2.  Configurations of the multi-scale simulation models

    图  3  不同模型的自由面速度曲线与实验数据[25]对比

    Figure  3.  Comparison of free-surface velocity profiles by different models with experiment data[25]

    图  4  宏观尺度下不同拉伸应变率自由面速度曲线

    Figure  4.  Free surface velocity under various tensile strain rates at macro-scale

    图  5  层裂强度与拉伸应变率关系

    Figure  5.  Relationship between spall strength and tensile strain rate

    图  6  对数坐标下层裂强度与拉伸应变率的关系

    Figure  6.  Relationship between spall strength and tensile strain rate in logarithmic coordinates

    图  7  Pullback信号及其对应的MD模型应力与空洞演化情况

    Figure  7.  Pullback signal and the stress and void volume evolution in the MD model

    图  8  Pullback信号持续时间Δt内空洞演化情况

    Figure  8.  Void evolution during Pullback signal duration Δt

    图  9  空洞体积演化与应力及空洞数量的关系

    Figure  9.  Relationship of the evolution of void volume with stress and void numbers

    图  10  阶段1的空洞数量演化情况

    Figure  10.  Void number evolution during stage 1

    图  11  阶段2与3的空洞长大与聚集情况

    Figure  11.  Void growing and coalescence during stage 2 and stage 3

    图  12  自由面速度回跳曲线

    Figure  12.  Free surface velocity curve from spall signal

    图  13  层裂强度与回跳速率的关系

    Figure  13.  Relationship between spalling strength and rebound rate

    图  14  不同拉伸应变率下自由面速度回跳速率

    Figure  14.  Free surface bounce rate under various tensile strain rates

    图  15  不同应变率下应力时程曲线

    Figure  15.  Histories of stress under different strain rates

    图  16  不同应变率下损伤演化情况

    Figure  16.  Damage evolution under different strain rates

    表  1  Mie-Grüneisen状态方程参数

    Table  1.   Parameters for Mie-Grüneisen equation of state

    材料ρ0 /(kg·m−3)c0/(m·s−1)S1γ
    Ta1669033401.201.67
    下载: 导出CSV

    表  2  Johnson-Cook模型参数

    Table  2.   Parameters for the Johnson-Cook model

    材料A/MPaB/MPanCm
    Ta1421640.310.0570.88
    下载: 导出CSV

    表  3  Zerilli-Armstrong模型参数

    Table  3.   Parameters for the Zerilli-Armstrong model

    材料C0/MPak1/(MPa·m−3/2C2/MPaC3/K−1C4/K−1C5/MPan
    Ta1125101785.35×10−30.327×10−33100.44
    下载: 导出CSV

    表  4  Steinberg-Cochran-Guinan模型参数

    Table  4.   Parameters for the Steinberg-Cochran-Guinan model

    材料G0/GPaY0/GPaYmax/GPaβn$ {G}_{\rm{p}}^{'} $$ {G}_{\rm{T}}^{'} $/(MPa ·K−1Tm0/K
    Ta690.771.10100.11.005−8.974340
    下载: 导出CSV

    表  5  用于验证的模型编号及参数设置

    Table  5.   Model number and parameter settings for validation

    模型编号飞片厚度/mm样片厚度/mm强度模型方法
    V-0134.95JCLagrange
    V-0234.95JCSPH
    V-0334.95ZALagrange
    V-0434.95ZASPH
    V-0534.95SCGLagrange
    V-0634.95SCGSPH
    下载: 导出CSV

    表  6  不同应变率下平面撞击层裂模型参数与结果

    Table  6.   Parameters of planar plate impact simulations and results under various strain rates

    模型编号飞片厚度/mm样片厚度/mm加载速度/(m·s−1)p/GPa$ {\dot{\varepsilon }}_{\rm{s}} $/s−1$ {\sigma }_{\rm{spall}} $/GPa$ {\dot{\varepsilon }}_{\rm{r}} $/s−1
    S-0124.953068.845.40×1044.923.57×104
    S-0224.952507.054.69×1044.703.25×104
    S-0334.9541012.25 3.92×1044.142.32×104
    S-0434.953068.843.28×1043.971.74×104
    S-0534.952106.192.68×1043.711.69×104
    S-0644.953068.842.31×1043.341.34×104
    下载: 导出CSV

    表  7  不同计算公式得到的层裂强度

    Table  7.   Spall strengths obtained by different formulas

    模型编号$ {\sigma }_{\rm{spall}} $/GPa$ {\sigma }_{\rm{spall}}^{\left(1\right)} $/GPa$ {\sigma }_{\rm{spall}}^{\left(2\right)} $/GPa
    S-014.925.255.36
    S-024.715.025.32
    S-034.134.404.48
    S-043.974.234.32
    S-053.723.964.07
    S-063.353.573.58
    下载: 导出CSV
  • [1] LU K. The future of metals [J]. Science, 2010, 328(5976): 319–320. DOI: 10.1126/science.1185866.
    [2] 裴晓阳, 彭辉, 贺红亮, 等. 延性金属层裂自由面速度曲线物理涵义解读 [J]. 物理学报, 2015, 64(3): 034601. DOI: 10.7498/aps.64.034601.

    PEI X Y, PENG H, HE H L, et al. Discussion on the physical meaning of free surface velocity curve in ductile spallation [J]. Acta Physica Sinica, 2015, 64(3): 034601. DOI: 10.7498/aps.64.034601.
    [3] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5): 253–388. DOI: 10.1016/0370-1573(87)90049-4.
    [4] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2003: 199−200.
    [5] THOMAS S A, HAWKINS M C, MATTHES M K, et al. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel [J]. Journal of Applied Physics, 2018, 123(17): 175902. DOI: 10.1063/1.5019484.
    [6] 陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与“反常”层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. DOI: 10.11883/1001-1455(2009)06-0637-05.

    CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. DOI: 10.11883/1001-1455(2009)06-0637-05.
    [7] 翟少栋, 李英华, 彭建祥, 等. 平面碰撞与强激光加载下金属铝的层裂行为 [J]. 爆炸与冲击, 2016, 36(6): 767–773. DOI: 10.11883/1001-1455(2016)06-0767-07.

    ZHAI S D, LI Y H, PENG J X, et al. Spall behavior of pure aluminum under plate-impactand high energy laser shock loadings [J]. Explosion and Shock Waves, 2016, 36(6): 767–773. DOI: 10.11883/1001-1455(2016)06-0767-07.
    [8] KOLLER D D, HIXSON R S, III G T G, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. DOI: 10.1063/1.2128493.
    [9] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. DOI: 10.1007/s11831-010-9040-7.
    [10] 张凤国, 刘军, 王裴, 等. 三角波强加载下延性金属多次层裂破坏问题 [J]. 爆炸与冲击, 2018, 38(3): 659–664. DOI: 10.11883/bzycj-2016-0279.

    ZHANG F G, LIU J, WANG P, et al. Multi-spall in ductile metal under triangular impulse loading [J]. Explosion and Shock Waves, 2018, 38(3): 659–664. DOI: 10.11883/bzycj-2016-0279.
    [11] 种涛, 唐志平, 谭福利, 等. 纯铁相变和层裂损伤的数值模拟 [J]. 高压物理学报, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528.

    CHONG T, TANG Z P, TAN F L, et al. Numerical simulation of phase transition and spall of iron [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528.
    [12] GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: Experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65(3): 1–12. DOI: 10.1016/j.ijimpeng.2013.10.010.
    [13] LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [C]// TREASE H E, FRITTS M F, CROWLEY W P. Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Berlin: Springer Berlin Heidelberg, 1991, 248−257. DOI: 10.1007/3-540-54960-9_58.
    [14] 徐志宏, 汤文辉, 罗永. 光滑粒子模拟方法在超高速碰撞现象中的应用 [J]. 爆炸与冲击, 2006, 26(1): 53–58. DOI: 10.11883/1001-1455(2006)01-0053-06.

    XU Z H, TANG W H, LUO Y. Applications of the smoothed particle hydrodynamics method to hypervelocity impact simulations [J]. Explosion and Shock Waves, 2006, 26(1): 53–58. DOI: 10.11883/1001-1455(2006)01-0053-06.
    [15] ZHOU C E, LOU K Y, LIU G R. Three-dimensional penetration simulation using smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2007, 04(04): 671–691. DOI: 10.1142/S0219876207000972.
    [16] 贺年丰, 任国武, 陈永涛, 等. 爆轰加载下金属锡层裂破碎数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 042101. DOI: 10.11883/bzycj-2017-0354.

    HE N F, REN G W, CHEN Y T, et al. Numerical simulation on spallation and fragmentation of tin under explosive loading [J]. Explosion and Shock Waves, 2019, 39(4): 042101. DOI: 10.11883/bzycj-2017-0354.
    [17] 席涛, 范伟, 储根柏, 等. 超高应变率载荷下铜材料层裂特性研究 [J]. 物理学报, 2017, 66(4): 040202. DOI: 10.7498/aps.66.040202.

    XI T, FAN W, CHU G B, et al. Spall behavior of copper under ultra-high strain rate loading [J]. Acta Physica Sinica, 2017, 66(4): 040202. DOI: 10.7498/aps.66.040202.
    [18] RAWAT S, RAOLE P M. Molecular dynamics investigation of void evolution dynamics in single crystal iron at extreme strain rates [J]. Computational Materials Science, 2018, 154(11): 393–404. DOI: 10.1016/j.commatsci.2018.08.010.
    [19] YANG X, ZENG X, WANG J, et al. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates [J]. Mechanics of Materials, 2019, 135(8): 98–113. DOI: 10.1016/j.mechmat.2019.05.005.
    [20] CHEN J, FENSIN S J. Associating damage nucleation and distribution with grain boundary characteristics in Ta [J]. Scripta Materialia, 2020, 187(11): 329–334. DOI: 10.1016/j.scriptamat.2020.06.035.
    [21] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究 [J]. 物理学报, 2019, 68(24): 246102. DOI: 10.7498/aps.68.20190920.

    WANG Y T, ZENG X G, YANG X. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate [J]. Acta Physica Sinica, 2019, 68(24): 246102. DOI: 10.7498/aps.68.20190920.
    [22] HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126(3): 313–328. DOI: 10.1016/j.actamat.2016.12.033.
    [23] WANG H, GAO N, Lü G H, et al. Effects of temperature and point defects on the stability of C15 Laves phase in iron: A molecular dynamics investigation [J]. Chinese Physics B, 2018, 27(6): 066104. DOI: 10.1088/1674-1056/27/6/066104.
    [24] DANIAN C, CHUNLEI F, SHUGANG X, et al. Study on constitutive relations and spall models for oxygen-free high-conductivity copper under planar shock tests [J]. Journal of Applied Physics, 2007, 101(6): 063532. DOI: 10.1063/1.2711405.
    [25] CZARNOTA C, JACQUES N, MERCIER S, et al. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum [J]. Journal of the Mechanics & Physics of Solids, 2008, 56(4): 1624–1650. DOI: 10.1016/j.jmps.2007.07.017.
    [26] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980: 75−78.
    [27] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [28] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [29] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [30] 樊雪飞. 药型罩材料性能对双模毁伤元成型影响研究[D]. 南京: 南京理工大学, 2017: 19−22.
    [31] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. DOI: 10.1016/0022-5096(88)90015-4.
    [32] 邸德宁, 陈小伟. 碎片云SPH方法数值模拟中的材料失效模型 [J]. 爆炸与冲击, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.

    DI D N, CHEN X W. Material failure models in SPH simulation of debris cloud [J]. Explosion and Shock Waves, 2018, 38(5): 948–956. DOI: 10.11883/bzycj-2017-0328.
    [33] 陈大年, 俞宇颖, 尹志华, 等. 对于层裂强度传统测定方法有效性的讨论 [J]. 工程力学, 2006, 23(1): 62–68. DOI: 10.3969/j.issn.1000-4750.2006.01.013.

    CHEN D N, YU Y Y, YIN Z H, et al. On the validity of the traditional methodology of spall strength measurement [J]. Engineering Mechanics, 2006, 23(1): 62–68. DOI: 10.3969/j.issn.1000-4750.2006.01.013.
    [34] DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106s−1 [J]. Journal of Applied Physics, 2008, 104(1): 013526. DOI: 10.1063/1.2949276.
    [35] RAVELO R, GERMANN T C, GUERRERO O, et al. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations [J]. Physical Review B, 2013, 88(13): 134101. DOI: 10.1103/PhysRevB.88.134101.
    [36] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995.1039.
    [37] 张林. 延性材料冲击响应: 动态损伤与断裂、结构相变的新模型[D]. 绵阳: 中国工程物理研究院, 2005: 68−69.
    [38] KANEL G I. Dynamic strength of materials [J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(11): 1011–1020. DOI: 10.1046/j.1460-2695.1999.00246.x.
    [39] ZUREK A K, THISSELL W R, JOHNSON J N, et al. Micromechanics of spall and damage in tantalum [J]. Journal of Materials Processing Technology, 1996, 60(1-4): 261–267. DOI: 10.1016/0924-0136(96)02340-0.
    [40] KANEL G I, RAZORENOV S V, BOGATCH A, et al. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. International Journal of Impact Engineering, 1997, 20(6): 467–478. DOI: 10.1016/S0734-743X(97)87435-0.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  284
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 修回日期:  2021-02-07
  • 网络出版日期:  2021-07-28
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回