Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

月牙形空腔结构金属靶的抗弹性能分析

高伟韬 彭克锋 张永亮 郑航 赵凯 郑志军

刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000, 20(2): 110-114. doi: 10.11883/1001-1455(2000)02-0110-5
引用本文: 高伟韬, 彭克锋, 张永亮, 郑航, 赵凯, 郑志军. 月牙形空腔结构金属靶的抗弹性能分析[J]. 爆炸与冲击, 2021, 41(5): 053303. doi: 10.11883/bzycj-2020-0473
GAO Weitao, PENG Kefeng, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. On ballistic performance of a metal target with crescent-shaped cavity structure[J]. Explosion And Shock Waves, 2021, 41(5): 053303. doi: 10.11883/bzycj-2020-0473
Citation: GAO Weitao, PENG Kefeng, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. On ballistic performance of a metal target with crescent-shaped cavity structure[J]. Explosion And Shock Waves, 2021, 41(5): 053303. doi: 10.11883/bzycj-2020-0473

月牙形空腔结构金属靶的抗弹性能分析

doi: 10.11883/bzycj-2020-0473
基金项目: 中央高校基本科研业务费专项资金(WK2090000019)
详细信息
    作者简介:

    高伟韬(1995- ),男,博士研究生,gweitao@mail.ustc.edu.cn

    通讯作者:

    郑志军(1979- ),男,博士,副教授,zjzheng@ustc.edu.cn

  • 中图分类号: O385

On ballistic performance of a metal target with crescent-shaped cavity structure

  • 摘要: 为提高金属靶的抗弹性能,设计了一种含有月牙形空腔结构的金属靶。利用ABAQUS软件对月牙形空腔结构在12.7 mm穿甲燃烧弹弹芯侵彻下的弹体偏转性能进行了数值模拟研究,讨论了月牙形状、弹着点和空间排布对弹体偏转效果的影响。结果表明:月牙形状对弹体的偏转效果有显著的影响;空腔结构在不同弹着点表现出不同的弹体偏转性能,处于空腔胞元最薄弱处附近的弹着点弹体偏转角度明显小于其他位置;空腔胞元空间排布的非对称化处理能够提升空腔结构对子弹的偏转效果。
  • 图  1  弹体冲击空腔结构靶板的示意图

    Figure  1.  Schematic diagram showing a projectile impacting a cavity structure target

    图  2  靶板几何结构和尺寸

    Figure  2.  Geometric structures and sizes of targets

    图  3  弹靶有限元模型

    Figure  3.  A finite element model for a projectile and a target

    图  4  弹体偏转角度和角速度计算

    Figure  4.  Calculation of deflection angle and angular velocity of the projectile

    图  5  刚性弹侵彻603钢靶的变形图

    Figure  5.  Deformation diagram of a 603 steel target impacted by a rigid projectile

    图  6  靶板(d=16 mm, α=0.3)的变形和压强云图

    Figure  6.  Deformation and pressure cloud of the target with d=16 mm and α=0.3

    图  7  偏离度α对子弹偏转角度和角速度的影响

    Figure  7.  Influence of deviation degree α on the deflection angle and angular velocity of a projectile

    图  8  含有直径为16 mm的月牙形孔洞的靶板在不同偏离度时的变形

    Figure  8.  Deformation of the target with a 16-mm-diameter crescent-like hole at different deviation degrees

    图  9  不同偏离度时的月牙形状

    Figure  9.  Crescent shapes at different deviation degrees

    图  10  不同球径时子弹最大偏转角度随偏离度的变化曲线

    Figure  10.  Change of the maximum deflection angle with deviation degree at different sphere diameters

    图  11  α=0.3时靶板的变形

    Figure  11.  Deformation of targets at α=0.3

    图  12  弹着点2示意图

    Figure  12.  Diagram of hitting position 2

    图  13  α=0.3时θmaxβ的变化曲线

    Figure  13.  Change of θmax with β at α=0.3

    图  14  不同弹着点时弹体最大偏转角

    Figure  14.  The maximum deflection angles of the projectile at different hitting positions

    图  15  弹体偏转角随时间的变化

    Figure  15.  Change of deflection angle of projectile with time

    图  16  弹体偏转俯视图

    Figure  16.  Top views of projectile deflection

    表  1  603装甲钢材料模型参数[13]

    Table  1.   Material model parameters of 603 armor steel [13]

    材料ρ0/(g·cm−3)G/GPacp/(J·kg−1·K−1)c0/(m·s−1)s1γ0χTr/KTm/K˙ε0/s−1
    603钢7.879.24774 5701.331.670.93001 7601.0
    材料A/MPaB/MPanCmD1D2D3D4D5
    603钢9506600.2320.0081.03−0.82.0−0.472×10−40.61
    下载: 导出CSV
  • [1] BEN-MOSHE D, TARSI Y, ROSENBERG G. An armor assembly for armored vehicles: European Patent 0209221A1 [P]. 1986-05-13.
    [2] BALOS S, GRABULOV V, SIDJANIN L, et al. Geometry, mechanical properties and mounting of perforated plates for ballistic application [J]. Materials and Design, 2010, 31(6): 2916–2924. DOI: 10.1016/j.matdes.2009.12.031.
    [3] MISHRA B, RAMAKRISHNA B, JENA P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact [J]. Materials and Design, 2013, 43: 17–24. DOI: 10.1016/j.matdes.2012.06.037.
    [4] RADISAVLJEVIC I, BALOS S, NIKACEVIC M, et al. Optimization of geometrical characteristics of perforated plates [J]. Materials and Design, 2013, 49: 81–89. DOI: 10.1016/j.matdes.2012.12.010.
    [5] 胡丽萍, 王智慧, 满红, 等. 孔结构间隙复合装甲位置效应研究 [J]. 兵器材料科学与工程, 2010, 33(1): 89–90. DOI: 10.14024/j.cnki.1004-244x.2010.01.034.

    HU L P, WANG Z H, MAN H, et al. Study on the spot effect of spaced composite armor with multi-holes [J]. Ordnance Material Science and Engineering, 2010, 33(1): 89–90. DOI: 10.14024/j.cnki.1004-244x.2010.01.034.
    [6] 王建波, 闫慧敏, 范秉源, 等. 弹着点对多孔钢板抗弹性能影响的数值模拟 [J]. 兵器材料科学与工程, 2010, 33(6): 73–75. DOI: 10.14024/j.cnki.1004-244x.2010.06.038.

    WANG J B, YAN H M, FAN B Y, et al. Numerical simulation analysis about the influence of the hitting position on the ballistic performance of the multi-hole steel plate [J]. Ordnance Material Science and Engineering, 2010, 33(6): 73–75. DOI: 10.14024/j.cnki.1004-244x.2010.06.038.
    [7] 李换芝. 倾角穿孔装甲对14.5 mm穿燃弹防护性能的影响 [J]. 科技创新与生产, 2016(2): 90–91; 94. DOI: 10.3969/j.issn.1674-9146.2016.02.090.

    LI H Z. Influence of oblique perforated armor on the protective performance of the 14.5 mm armor-piercing incendiary [J]. Sci-tech Innovation and Productivity, 2016(2): 90–91; 94. DOI: 10.3969/j.issn.1674-9146.2016.02.090.
    [8] 秦庆华, 崔天宁, 施前, 等. 孔结构金属装甲抗弹能力的数值模拟 [J]. 高压物理学报, 2018, 32(5): 055105. DOI: 10.11858/gywlxb.20180530.

    QIN Q H, CUI T N, SHI Q, et al. Numerical study on ballistic resistance of metal perforated armor to projectile impact [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055105. DOI: 10.11858/gywlxb.20180530.
    [9] 李海亮, 贾德昌, 杨治华, 等. 选区激光熔化3D打印钛合金及其复合材料研究进展 [J]. 材料科学与工艺, 2019, 27(2): 1–15. DOI: 10.11951/j.issn.1005-0299.20180110.

    LI H L, JIA D C, YANG Z H, et al. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composite [J]. Materials Science and Technology, 2019, 27(2): 1–15. DOI: 10.11951/j.issn.1005-0299.20180110.
    [10] MA C L, GU D D, LIN K J, et al. Selective laser melting additive manufacturing of cancer pagurus’s claw inspired bionic structures with high strength and toughness [J]. Applied Surface Science, 2019, 469: 647–656. DOI: 10.1016/j.apsusc.2018.11.026.
    [11] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, The Netherlands, 1983: 541-547.
    [12] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [13] 高华, 熊超, 殷军辉, 等. 多层异质陶瓷复合靶板抗侵彻试验及数值模拟 [J]. 火炮发射与控制学报, 2019, 40(1): 89–93; 98. DOI: 10.19323/j.issn.1673-6524.2019.01.018.

    GAO H, XIONG C, YIN J H, et al. Anti-penetration test and numerical simulation of multilayer heterogeneous ceramic composite target [J]. Journal of Gun Launch and Control, 2019, 40(1): 89–93; 98. DOI: 10.19323/j.issn.1673-6524.2019.01.018.
    [14] IQBAL M A, SENTHIL K, SHARMA P, et al. An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material [J]. International Journal of Impact Engineering, 2016, 96: 146–164. DOI: 10.1016/j.ijimpeng.2016.05.017.
    [15] 苗成, 刘江南, 钟涛, 等. 钛合金板抗12.7 mm穿甲燃烧弹厚度效应试验研究 [J]. 兵器材料科学与工程, 2012, 35(5): 68–70. DOI: 10.14024/j.cnki.1004-244x.2012.05.005.

    MIAO C, LIU J N, ZHONG T, et al. Thickness effect of titanium alloy plates against 12.7 mm API [J]. Ordnance Material Science and Engineering, 2012, 35(5): 68–70. DOI: 10.14024/j.cnki.1004-244x.2012.05.005.
  • 加载中
推荐阅读
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
循环冲击作用下砂岩裂缝扩展及渗透率响应特征
王伟 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
孔洞增长层裂模型的改进及其在模拟不同加载波形层裂实验结果方面的应用
张凤国 等, 爆炸与冲击, 2024
预应力对电梯钢丝绳中弹性波传播特性的影响
魏义敏 等, 浙江理工大学学报(自然科学), 2023
基于sph方法的钢筋混凝土切削模拟研究
谭松成 等, 金刚石与磨料磨具工程, 2023
20 gpa斜波压缩下pbx-14炸药的动力学响应
种涛 等, 高压物理学报, 2022
The role of silicon in drug discovery: a review
Panayides, Jenny-Lee et al., RSC MEDICINAL CHEMISTRY, 2024
Numerical investigation on the bearing capacity of rc columns strengthened by hpfl-bsp under combined loadings
JOURNAL OF BUILDING ENGINEERING
Effect of particle size distribution on dynamic properties of cemented coral sand under shpb impact loading
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2022
Powered by
图(16) / 表(1)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  396
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-05-07
  • 刊出日期:  2021-05-05

目录

    /

    返回文章
    返回