弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究

张山豹 孔祥振 方秦 洪建

张山豹, 孔祥振, 方秦, 洪建. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究[J]. 爆炸与冲击, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007
引用本文: 张山豹, 孔祥振, 方秦, 洪建. 弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究[J]. 爆炸与冲击, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007
ZHANG Shanbao, KONG Xiangzhen, FANG Qin, HONG Jian. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target[J]. Explosion And Shock Waves, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007
Citation: ZHANG Shanbao, KONG Xiangzhen, FANG Qin, HONG Jian. Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target[J]. Explosion And Shock Waves, 2022, 42(1): 013302. doi: 10.11883/bzycj-2021-0007

弹体超高速侵彻石灰岩靶体地冲击的数值模拟研究

doi: 10.11883/bzycj-2021-0007
基金项目: 国家自然科学基金(51808550);中国博士后科学基金(2020M671296)
详细信息
    作者简介:

    张山豹(1996- ),男,博士研究生,thzhangs@126.com

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O385

Numerical simulation on ground shock waves induced by hypervelocity penetration of a projectile into a limestone target

  • 摘要: 为探究超高速动能武器的对地破坏效应及其影响因素,采用数值模拟方法对弹体超高速侵彻的地冲击规律进行了研究。首先,基于石灰岩静动态力学性能实验数据对材料模型参数进行了标定,并对已有弹体大范围着速侵彻石灰岩靶体进行了模拟,验证了所采用材料模型和数值模拟方法的合理性。随后,开展了钨合金长杆弹超高速侵彻石灰岩靶体的数值模拟,细致分析了地冲击传播的现象和机理:弹体超高速侵彻靶体时,弹靶交界面处会产生瞬时高压,并以应力波的形式在靶体中传播,对靶体内部造成破坏,且当弹体初速度高于3.0 km/s时,地冲击显著增强。最后,进一步研究了不同弹靶参数对地冲击的影响,发现从相对深度来看,弹体参数(弹体长径比、密度)对地冲击规律影响不大;而靶体特征特别是孔隙率对地冲击传播具有较大影响。
  • 图  1  最大强度面模型与实验数据的拟合

    Figure  1.  Fitting of the maximum strength surface model to the experimental data

    图  2  石灰岩应力-应变曲线的数值模拟结果与实验数据的对比

    Figure  2.  Comparison of stress-strain curves of limestone between experimental data and numerical simulation

    图  3  石灰岩动态强度增强因子随应变率的变化曲线

    Figure  3.  Changes of the dynamic increase factors with strain rate for limestone

    图  4  石灰岩状态方程曲线与实验数据的拟合

    Figure  4.  Equation of state of limestone fitted to experimental data

    图  5  数值模拟的侵彻深度与实验数据的对比

    Figure  5.  Simulated depths of penetration at different initial projectile velocities compared with experimental data

    图  6  应力波造成的靶体破坏分区

    Figure  6.  Damage regions of the target caused by stress waves

    图  7  数值模拟得到不同撞击速度下的的侵彻深度

    Figure  7.  Simulated depths of penetration at different initial projectile velocities

    图  8  超高速侵彻过程中的破坏现象及压力波传播

    Figure  8.  Damage and pressure wave propagation in the target during hypervelocity penetration

    图  9  不同深度的应力时程曲线

    Figure  9.  Time histories of stress waves at different depths

    图  10  不同弹体初速度下应力峰值随深度的变化趋势

    Figure  10.  Change of peak stress with depth at different initial projectile velocities

    图  11  侵彻深度与弹体长径比的关系(弹径不变)

    Figure  11.  Depth of penetration versus length-to-diameter ratio at a constant projectile diameter

    图  12  弹体长径比对地冲击的影响

    Figure  12.  Effect of length-to-diameter ratio on ground shock wave

    图  13  弹体密度对地冲击的影响

    Figure  13.  Effects of projectile density on ground shock wave

    图  14  不同孔隙率岩石材料的状态方程

    Figure  14.  Equations of state for limestones with different porosities

    图  15  靶体孔隙率对地冲击的影响

    Figure  15.  Effect of target porosity on ground shock wave

    表  1  石灰岩的强度模型参数

    Table  1.   Parameters of the strength surface models for limestone

    最大强度面残余强度面屈服强度面损伤参数
    a1a2a3a1ya2yλm
    0.8770.0220.800.8900.0463×10−5
    下载: 导出CSV

    表  2  石灰岩的动态强度增强因子参数

    Table  2.   Parameters for dynamic increase factors of limestone

    动态强度增强因子FmWxSWy
    DIFC 91.81.25.0
    DIFT101.61.65.5
    下载: 导出CSV

    表  3  石灰岩的状态方程参数

    Table  3.   Equation of state parameters for limestone

    pcrush/MPaplock/GPanA1/GPaA2/GPaA3/GPa
    1001.44322.53–175.0495.0
    下载: 导出CSV

    表  4  不同弹体密度情况下的侵彻深度

    Table  4.   Depths of penetration at different projectile densities

    材料ρs/(kg∙m−3ρs/ρt1/2hp/m
    27851.102.58
    78301.854.69
    170002.736.20
    下载: 导出CSV
  • [1] KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of striking velocities: test and analyses [J]. International Journal of Impact Engineering, 2017, 106: 18–29. DOI: 10.1016/j.ijimpeng.2017.02.022.
    [2] 钱秉文, 周刚, 李进, 等. 钨合金柱形弹超高速撞击水泥砂浆靶的侵彻深度研究 [J]. 爆炸与冲击, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.

    QIAN B W, ZHOU G, LI J, et al. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target [J]. Explosion and Shock Waves, 2019, 39(8): 083301. DOI: 10.11883/bzycj-2019-0141.
    [3] 王杰, 武海军, 杨荷, 等. 高速/超高速侵彻半无限靶研究进展 [J]. 兵工学报, 2017, 38(S1): 73–88.

    WANG J, WU H J, YANG H, et al. Research progress in penetration of projectiles into semi-infinite targets at high-velocity/hypervelocity [J]. Acta Armamentarii, 2017, 38(S1): 73–88.
    [4] 李争, 刘元雪, 胡明, 等. “上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–164. DOI: 10.13465/j.cnki.jvs.2016.14.026.

    LI Z, LIU Y X, HU M, et al. Damage effect evaluation of God stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–164. DOI: 10.13465/j.cnki.jvs.2016.14.026.
    [5] POELCHAU M H, KENKMANN T, THOMA K, et al. The MEMIN research unit: scaling impact cratering experiments in porous sandstones [J]. Meteoritics and Planetary Science, 2013, 48(1): 8–22. DOI: 10.1111/maps.12016.
    [6] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [7] 钱秉文, 周刚, 李进, 等. 钨合金弹体超高速撞击混凝土靶成坑特性研究 [J]. 北京理工大学学报, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.

    QIAN B W, ZHOU G, LI J, et al. Study of the crater produced by hypervelocity tungsten alloy projectile into concrete target [J]. Transactions of Beijing Institute of Technology, 2018, 38(10): 1012–1017. DOI: 10.15918/j.tbit1001-0645.2018.10.004.
    [8] 孔祥振, 方秦, 吴昊, 等. 长杆弹超高速侵彻半无限靶理论模型的对比分析与讨论 [J]. 振动与冲击, 2017, 36(20): 37–43. DOI: 10.13465/j.cnki.jvs.2017.20.007.

    KONG X Z, FANG Q, WU H, et al. Comparisons of long rod high velocity penetration models for semi-infinite targets [J]. Journal of Vibration and Shock, 2017, 36(20): 37–43. DOI: 10.13465/j.cnki.jvs.2017.20.007.
    [9] KONG X Z, WU H, FANG Q, et al. Rigid and eroding projectile penetration into concrete targets based on an extended dynamic cavity expansion model [J]. International Journal of Impact Engineering, 2017, 100: 13–22. DOI: 10.1016/ j.ijimpeng.2016.10.005.
    [10] ANTOUN T H, GLENN L A, WALTON O R, et al. Simulation of hypervelocity penetration in limestone [J]. International Journal of Impact Engineering, 2006, 33: 45–52. DOI: 10.1016/j.ijimpeng.2006.09.009.
    [11] 邓国强, 杨秀敏. 超高速武器对地打击效应数值仿真 [J]. 科技导报, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.

    DENG G Q, YANG X M. Numerical simulation of damage effect of hyper velocity weapon on ground target [J]. Science and Technology Review, 2015, 33(16): 65–71. DOI: 10.3981/j.issn.1000-7857.2015.16.010.
    [12] 邓国强, 杨秀敏. 超高速武器流体侵彻与装药浅埋爆炸效应的等效方法 [J]. 防护工程, 2015, 37(6): 27–32.

    DENG G Q, YANG X M. Effect equivalent method between fluid penetration of hypervelocity weapon and shallow detonation of explosive [J]. Protective Engineering, 2015, 37(6): 27–32.
    [13] 王明洋, 岳松林, 李海波, 等. 超高速弹撞击岩石的地冲击效应等效计算 [J]. 岩石力学与工程学报, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.

    WANG M Y, YUE S L, LI H B, et al. An equivalent calculation method of ground shock effects of hypervelocity projectile striking on rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.
    [14] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.

    FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.
    [15] FOSSUM A F, SENSENY P E, PFEIFLE T W, et al. Experimental determination of probability distributions for parameters of a Salem limestone cap plasticity model [J]. Mechanics of Materials, 1995, 21(2): 119–137. DOI: 10.1016/0167-6636(95)00002-X.
    [16] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [17] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [18] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [19] FOSSUM A F, BRANNON R M. On a viscoplastic model for rocks with mechanism-dependent characteristic times [J]. Acta Geotechnica, 2006, 1(2): 89–106. DOI: 10.1007/s11440-006-0010-z.
    [20] FOSSUM A F. Rock penetration: finite element sensitivity and probabilistic modeling analyses [R]. Albuquerque, New Mexico: Sandia National Laboratories, 2004: 13–31.
    [21] WALTON G, HEDAYAT A, KIM E, et al. Post-yield strength and dilatancy evolution across the brittle-ductile transition in Indiana limestone [J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1691–1710. DOI: 10.1007/s00603-017-1195-1.
    [22] FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: 10.1007/BF02323102.
    [23] CHAKRABORTY T, MISHRA S, LOUKUS J, et al. Characterization of three Himalayan rocks using a split Hopkinson pressure bar [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 112–118. DOI: 10.1016/ j.ijrmms.2016.03.005.
    [24] KHAN A S, IRANI F K. An experimental study of stress wave transmission at a metallic-rock interface and dynamic tensile failure of sandstone, limestone, and granite [J]. Mechanics of Materials, 1987, 6(4): 285–292. DOI: 10.1016/0167-6636(87)90027-5.
    [25] KUBOTA S, OGATA Y, WADA Y, et al. Estimation of dynamic tensile strength of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 397–406. DOI: 10.1016/j.ijrmms.2007.07.003.
    [26] WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup [J]. Mechanics of Materials, 2009, 41(3): 252–260. DOI: 10.1016/j.mechmat.2008.10.004.
    [27] CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: 10.1016/S1365-1609(03)00072-8.
    [28] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. DOI: 10.1063/1.1658021.
    [29] HEARD H C, ABEY A E, BONNER B P. High pressure mechanical properties of Indiana limestone: UCID-16501 [R]. USA: California University, Lawrence Livermore National Laboratory, 1974.
    [30] LARSON D B, ANDERSON G D. Plane shock wave studies of porous geologic media [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4592–4600. DOI: 10.1029/JB084iB09p04592.
    [31] MURRI W J, SMITH C W, MAHRER K D. Equation of state of rocks: PYU-1883 [R]. USA: Stanford Research Institute, 1974.
    [32] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [33] MCFARLAND C, PAPADOS P, GILTRUD M. Hypervelocity impact penetration mechanics [J]. International Journal of Impact Engineering, 2008, 35(12): 1654–1660. DOI: 10.1016/j.ijimpeng.2008.07.080.
    [34] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high strain rate [J]. Journal of Applied Mechanics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [35] 杜成成. 应力波在混凝土中传播特性及结构特征参数监测研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018: 49–77.

    DU C C. Research on transmission properties of stress waves in concrete and monitoring of structural characteristic parameters [D]. Harbin: Harbin Institute of Technology, 2018: 49–77.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  585
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 录用日期:  2021-11-22
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回