纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析

谢继标 张嘉琪 丁策 王晓丽

谢继标, 张嘉琪, 丁策, 王晓丽. 纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析[J]. 爆炸与冲击, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016
引用本文: 谢继标, 张嘉琪, 丁策, 王晓丽. 纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析[J]. 爆炸与冲击, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016
XIE Jibiao, ZHANG Jiaqi, DING Ce, WANG Xiaoli. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2[J]. Explosion And Shock Waves, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016
Citation: XIE Jibiao, ZHANG Jiaqi, DING Ce, WANG Xiaoli. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2[J]. Explosion And Shock Waves, 2021, 41(9): 095402. doi: 10.11883/bzycj-2021-0016

纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析

doi: 10.11883/bzycj-2021-0016
基金项目: 科技部国家重点研发计划(2018YFE0106400);国家自然科学基金青年科学基金(41907329)
详细信息
    作者简介:

    谢继标(1996- ),男,硕士研究生,xjb603017@163.com

    通讯作者:

    王晓丽(1972- ),女,教授,tjutwxl@163.com

  • 中图分类号: O389;X932

Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2

  • 摘要: 为研究纳米疏水性SiO2粉末作为阻燃剂和流动增强剂作用下丁烷爆炸速度与压力的耦合规律,在自行设计并搭建的基于LabVIEW控制系统的爆炸测试平台上开展了实验,通过休止角测试、SEM(scanning electron microscope)和EDS(energy dispersive spectrometer)分析了粉末团聚情况,分析了混合粉末抑制爆炸的机理,同时,实验了不同比例和不同浓度下纳米疏水性SiO2改善CaCO3粉末流动性并协同其抑制丁烷爆炸的效果,对爆炸火焰速度和压力的耦合关系进行了分析。结果表明,添加疏水性SiO2可以使混合粉末的休止角降低,流动性增强,改善粉末的扩散效果和贮存能力,改变混合粉末的比例和浓度对燃烧反应有着显著的影响,在一定浓度范围内,粉末通过较大的比表面积和热解结合燃烧区域的自由基,使火焰传播速度和爆炸超压显著下降,但过大的粉末浓度会促进初期的爆炸,并且两种粉末协同对爆炸的抑制效果优于单一粉末。在混合粉末的抑制作用下,爆炸压力达到最大值时速度几乎降至最低,压力波形由持续上升变为单峰曲线。此外,在SiO2和CaCO3两种粉末质量比为1∶1混合、粉末质量浓度为106 g/m3时,对丁烷体积分数为4.20%的丁烷-空气混合气体爆炸的抑制效果最佳,火焰传播平均速度和最大爆炸超压的衰减率分别为85.5%和59.6%。
  • 图  1  装置结构和局部实物图

    Figure  1.  Structure of the device and photographs of physical parts

    图  2  测试系统结构示意图

    Figure  2.  Schematic diagram of the structure of test system

    图  3  不同体积分数丁烷爆炸火焰传播速度

    Figure  3.  Flame propagation velocity of butane explosion with different volume fractions

    图  4  混合粉末抑制爆炸分析(热重分析(TG),图右上;能谱分析(EDS分层图像),图右下)

    Figure  4.  Explosion suppression analysis of mixed powder (Thermogravimetric analysis (TG) image, upper right; and energy dispersive spectrometer analysis (EDS layered image) image, lower right)

    图  5  不同实验工况下的混合粉末对火焰传播速度的影响

    Figure  5.  Flame propagation velocity under different experimental conditions

    图  6  不同实验工况下的衰减率

    Figure  6.  Decay rates under different experimental conditions

    图  7  不同质量浓度的混合粉末对火焰传播速度的影响

    Figure  7.  Flame propagation velocity at different powder concentrations

    图  8  不同质量浓度下的衰减率

    Figure  8.  Decay rates under different mass concentrations

    图  9  不同条件下4.20%的丁烷爆炸火焰传播速度与压力耦合关系

    Figure  9.  Coupling relationship between flame propagation velocity and pressure of 4.20% butane explosion under different conditions

    表  1  粉末参数

    Table  1.   Parameters of powder

    工况(质量比)休止角/(°)比表面积/
    (m2∙g−1
    残余量/%
    30nmCaCO351.89 205.21
    50nmSiO2∶30nmCaCO3 (1∶0.5)40.581274.78
    50nmSiO2∶30nmCaCO3 (1∶1)41.021014.68
    50nmSiO2∶30nmCaCO3 (1∶1.5)42.18 844.55
    50nmSiO2∶30nmCaCO3 (1∶2)40.25 734.83
    下载: 导出CSV
  • [1] 李重情, 穆朝民, 许登科, 等. 空腔长度对瓦斯爆炸冲击波传播影响研究 [J]. 采矿与安全工程学报, 2018, 35(6): 1293–1300. DOI: 10.13545/j.cnki.jmse.2018.06.028.

    LI Z Q, MU C M, XU D K, et al. Influence of cavity length on shock wave propagation of gas explosion [J]. Journal of Mining & Safety Engineering, 2018, 35(6): 1293–1300. DOI: 10.13545/j.cnki.jmse.2018.06.028.
    [2] CHENG J W. Explosions in underground coal mines: risk assessment and control [M]. Cham: Springer, 2018: 2-20.
    [3] DUPLESSIS J J L. Active explosion barrier performance against methane and coal dust explosions [J]. International Journal of Coal Science & Technology, 2015, 2(4): 261–268. DOI: 10.1007/s40789-015-0097-7.
    [4] 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.

    LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
    [5] ZHANG J J, XU K L, YOU G, et al. Causation analysis of risk coupling of gas explosion accident in Chinese underground coal mines [J]. Risk Analysis, 2019, 39(7): 1634–1646. DOI: 10.1111/risa.13311.
    [6] LU C, ZHANG Y, ZHU H, et al. Spurting NH4H2PO4 powder to prevent the propagation of gas explosion along the duct [J]. Combustion Science and Technology, 2020: 1–19. DOI: 10.1080/00102202.2020.1748607.
    [7] HUANG D M, WANG X Q, YANG J. Influence of particle size and heating rate on decomposition of BC Dry chemical fire extinguishing powders [J]. Particulate Science and Technology, 2015, 33(5): 488–493. DOI: 10.1080/02726351.2015.1013591.
    [8] LIU Q M, HU Y L, BAI C H, et al. Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 310–316. DOI: 10.1016/j.jlp.2011.05.004.
    [9] CHEN X F, ZHANG Y, ZHANG Q M, et al. Experimental investigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders [J]. Theoretical and Applied Mechanics Letters, 2011, 1(3): 032004. DOI: 10.1063/2.1103204.
    [10] LUO Z M, WANG T, TIAN Z H, et al. Experimental study on the suppression of gas explosion using thegas–solid suppressant of CO2/ABC powder [J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 17–23. DOI: 10.1016/j.jlp.2014.04.006.
    [11] GAO R J, YAO Y, WU H, et al. Effect of amphoteric dispersant on the dispersion properties of nano-SiO2 particles [J]. Journal of Applied Polymer Science, 2017, 134(29): 45075. DOI: 10.1002/app.45075.
    [12] MENG T, YU H M, LIAN S S, et al. Effect of nano‐SiO2 on properties and microstructure of polymer modified cementitious materials at different temperatures [J]. Structural Concrete, 2020, 21(2): 794–803. DOI: 10.1002/suco.201900170.
    [13] ZHU J, XU C B, HUANG Q, et al. Improving fluidizability of cohesive particles by surface coating with flow conditioners [C]//Proceedings of the Fifth World Congress on Particle Technology. Florida: AiChE, 2006: 1−9.
    [14] ANTHONY J L, MARONE C. Influence of particle characteristics on granular friction [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B8): B08409. DOI: 10.1029/2004JB003399.
    [15] SAENKO E V, HUO Y, SHAMSUTDINOV A S, et al. Mesoporous hydrophobic silica nanoparticles as flow-enhancing additives for fire and explosion suppression formulations [J]. ACS Applied Nano Materials, 2020, 3(3): 2221–2233. DOI: 10.1021/acsanm.9b02309.
    [16] 王维, 刘玉硕, 房冉冉, 等. 疏水性可调型纳米二氧化硅的制备 [J]. 中国粉体技术, 2018, 24(4): 44–48. DOI: 10.13732/j.issn.1008-5548.2018.04.009.

    WANG W, LIU Y S, FANG R R, et al. Preparation of hydrophobic adjustable nano-silica [J]. China Powder Science and Technology, 2018, 24(4): 44–48. DOI: 10.13732/j.issn.1008-5548.2018.04.009.
    [17] 王浩杰, 张嘉琪, 王丽, 等. 基于LabVIEW的多场景环境监测系统优化设计 [J]. 仪表技术与传感器, 2019(10): 66–70. DOI: 10.3969/j.issn.1002-1841.2019.10.016.

    WANG H J, ZHANG J Q, WANG L, et al. Optimization design of multi-scene environment monitoring system based on LabVIEW [J]. Instrument Technique and Sensor, 2019(10): 66–70. DOI: 10.3969/j.issn.1002-1841.2019.10.016.
    [18] FROLOVA S M, GEL'FAND B E. Shockwave attenuation in gas suspensions [J]. Combustion, Explosion and Shock Waves, 1991, 27(1): 124–129. DOI: 10.1007/bf00785372.
    [19] SOMMERFELD M. The unsteadiness of shock waves propagating through gas-particle mixtures [J]. Experiments in Fluids, 1985, 3(4): 197–206. DOI: 10.1007/BF00265101.
    [20] OLIM M, BEN-DOR G, MOND M, et al. A general attenuation law of moderate planar shock waves propagating into dusty gases with relatively high loading ratios of solid particles [J]. Fluid Dynamics Research, 1990, 6(3): 185–199. DOI: 10.1016/0169-5983(90)90061-3.
    [21] 高正江, 张国庆, 李周, 等. 粉末粒度和氧含量对HIP态FGH96合金组织的影响 [J]. 稀有金属, 2012, 36(4): 665–670. DOI: 10.3969/j.issn.0258-7076.2012.04.026.

    GAO Z J, ZHANG G Q, LI Z, et al. Effect of size distribution and oxygen content of powder on microstructure of HIPed superalloy FGH96 [J]. Chinese Journal of Rare Metals, 2012, 36(4): 665–670. DOI: 10.3969/j.issn.0258-7076.2012.04.026.
    [22] 程方明, 邓军, 罗振敏, 等. 硅藻土粉体抑制瓦斯爆炸的实验研究 [J]. 采矿与安全工程学报, 2010, 27(4): 604–607. DOI: 10.3969/j.issn.1673-3363.2010.04.031.

    CHENG F M, DENG J, LUO Z M, et al. Experimental study on inhibiting gas explosion using diatomite powder [J]. Journal of Mining & Safety Engineering, 2010, 27(4): 604–607. DOI: 10.3969/j.issn.1673-3363.2010.04.031.
    [23] 丁浩青, 温小萍, 邓浩鑫, 等. 障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性 [J]. 安全与环境学报, 2017, 17(3): 958–962. DOI: 10.13637/j.issn.1009-6094.2017.03.028.

    DING H Q, WEN X P, DENG H X, et al. Suppression function of SiO2 nanoparticles against the gas explosion in the presence of obstacles [J]. Journal of Safety and Environment, 2017, 17(3): 958–962. DOI: 10.13637/j.issn.1009-6094.2017.03.028.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  191
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-03-22
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回