周向多线性爆炸成型弹丸技术研究现状与发展

蒋建伟 彭嘉诚

蒋建伟, 彭嘉诚. 周向多线性爆炸成型弹丸技术研究现状与发展[J]. 爆炸与冲击, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017
引用本文: 蒋建伟, 彭嘉诚. 周向多线性爆炸成型弹丸技术研究现状与发展[J]. 爆炸与冲击, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017
JIANG Jianwei, PENG Jiacheng. Research advances in circumferential multiple linear explosively-formed projectile technology[J]. Explosion And Shock Waves, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017
Citation: JIANG Jianwei, PENG Jiacheng. Research advances in circumferential multiple linear explosively-formed projectile technology[J]. Explosion And Shock Waves, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017

周向多线性爆炸成型弹丸技术研究现状与发展

doi: 10.11883/bzycj-2021-0017
详细信息
    作者简介:

    蒋建伟(1962- ),男,博士,教授,博士生导师,bitjjw@bit.edu.cn

  • 中图分类号: O381; TJ302

Research advances in circumferential multiple linear explosively-formed projectile technology

  • 摘要: 传统的破片式防空反导战斗部爆炸后产生的破片杀伤元数量虽多,却不能有效击毁来袭的不敏感弹药,存在威力不足问题,因而限制了其发展。周向多线性爆炸成型弹丸(multiple linear explosively-formed projectile, MLEFP)战斗部爆炸后在周向产生多个高速、大质量、大长径比的对折型线性爆炸成型弹丸(linear explosively-formed projectile, LEFP),具备击穿、击爆厚壁壳体不敏感弹药的能力,因此在中近程防空反导作战中具备广阔的应用前景。从线性毁伤元的发展和对折型LEFP的成型技术出发,重点分析了炸药装药、药型罩等关键部件影响线性毁伤元成型的研究成果,对比了3种毁伤元初速工程计算模型的理论依据、优缺点等,概括了近年来对折型LEFP侵彻试验结果,最后总结了周向MLEFP战斗部及其毁伤元未来的发展方向。
  • 图  1  周向MLEFP 战斗部模型[6]

    Figure  1.  A circumferential MLEFP warhead model[6]

    图  2  线性成型装药及线性射流[13]

    Figure  2.  Linear shaped charge and linear jet[13]

    图  3  线性圆缺形药型罩与LEFP[26]

    Figure  3.  Linear arc liner and LEFP[26]

    图  4  起爆机理、线性成型装药和侵彻钢靶试验结果[27]

    Figure  4.  Test results of initiation mechanism, linear shaped charge and penetration of steel target[27]

    图  5  对折型LEFP成型过程及侵彻钢靶结果[28]

    Figure  5.  The Process of forming LEFP and results of penetration on steel target[28]

    图  6  不同成型装药形成不同毁伤元分类

    Figure  6.  Classification of types of projectiles by different shaped charges

    图  7  周向MLEFP战斗部样机[31]

    Figure  7.  A prototype for a circumferential MLEFP warhead[31]

    图  8  周向MLEFP战斗部和单条线性成型装药模型[33]

    Figure  8.  A circumferential MLEFP warhead and the single linear shaped charge model[33]

    图  9  对折型LEFP成型速度与装药长度与宽度之比和装药高度与装药宽度之比的关系曲线以及LEFP成型形态[33]

    Figure  9.  Relations of forming velocity of folded LEFPs with the length-to-width and height-to-width ratios of the charges as well as the shapes of the LEFPs[33]

    图  10  分层装药周向MLEFP战斗部模型[34]

    Figure  10.  The model for a circumferential MLEFP warhead with composite charge[34]

    图  11  试验现场布置[34]

    Figure  11.  Test site layout[34]

    图  12  单方向曲率线性圆缺药型罩示意图

    Figure  12.  Schematic diagram of a linear circular charge liner with unidirectional curvature

    图  13  对折型LEFP成型速度和药型罩壁厚梯度、最大壁厚与长度之比的关系曲线以及成型形态[31-32]

    Figure  13.  Relations of forming velocity of folded LEFPs with the wall thickness gradient-to-length and the maximum wall thickness-to-length ratios of the liner as well as the shapes of the LEFPs[31-32]

    图  14  对折型LEFP成型速度和药型罩曲率半径与长度之比的关系曲线及成型形态[31-33]

    Figure  14.  Relations of forming velocity of folded LEFPs with the curvature radius-to-length ratio of the liner as well as the shapes of the LEFPs[31-33]

    图  15  单条线性成型装药二维模型[31]

    Figure  15.  A two-dimensional model of the single linear-shaped charge[31]

    图  16  双曲率线性罩成型LEFP图像[41]

    Figure  16.  The image of an LEFP formed from a double-curved liner[41]

    图  17  带外衬药型罩MLEFP战斗部模型[42]

    Figure  17.  An MLEFP warhead model with liners and outer linings[42]

    图  18  对折型LEFP对钢靶侵彻能力

    Figure  18.  Penetration ability of folded LEFPs to steel targets

    表  1  LEFPs成型速度[34]

    Table  1.   Forming velocity of LEFPs[34]

    方法LEFP成型速度/(m·s−1误差/%
    Gurney理论1 3039
    数值模拟1 4901.6
    静爆试验1 433/
    下载: 导出CSV

    表  2  数值模拟与侵彻试验结果[42]

    Table  2.   Results of numerical simulation and penetration tests[42]

    周向MLEFP战斗部成型形态侵彻后钢靶剖面
    无外衬
    有外衬
    下载: 导出CSV

    表  3  3种LEFP初速模型对比

    Table  3.   Comparison among the three models for calculating the initial velocity of an LEFP

    初速模型基础理论最大误差/%优点缺点
    公式(2)Gurney方法,
    动量守恒
    12.6形式简单,
    使用方便
    简单合计不同组分误差大,
    需增加修正系数
    公式(3)C-J爆轰理论,
    动量守恒
    4 形式简洁,
    精度高
    适用范围窄
    公式(5)有效装药理论,
    Gurney方法
    6 精度较好,
    适用范围广
    需计算获取大量初速数据,
    使用不便
    下载: 导出CSV
  • [1] ROSLUND L A. Initiation of warhead fragments I: Normal impacts: NOLTR 73-124 [R]. White Oak, MD: Naval Surface Weapons Center, 1973.
    [2] HELD M. Initiation criteria of high explosives at different projectile or jet densities [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 235–237. DOI: 10.1002/prep.19960210505.
    [3] 童宗保, 王金相, 彭楚才, 等. 预制破片对屏蔽炸药冲击引爆研究 [J]. 科学技术与工程, 2014, 14(7): 173–177. DOI: 10.3969/j.issn.1671-1815.2014.07.038.

    TONG Z B, WANG J X, PENG C C, et al. Study on the initiation of shielded explosive impacted by prefabricated fragment [J]. Science Technology and Engineering, 2014, 14(7): 173–177. DOI: 10.3969/j.issn.1671-1815.2014.07.038.
    [4] 魏继锋, 魏锦, 王树山. 离散杆战斗部技术研究 [J]. 战术导弹技术, 2015(2): 101–105. DOI: 10.16358/j.issn.1009-1300.2015.02.18.

    WEI J F, WEI J, WANG S S. Research on technology of discrete rod warhead [J]. Tactical Missile Technology, 2015(2): 101–105. DOI: 10.16358/j.issn.1009-1300.2015.02.18.
    [5] CEDER R, LEUS V, DAVID I. Exploring the v2d initiation criterion within the Lee-Tarver model [C]// Proceedings of the 30th International Symposium on Ballistics. Long Beach, 2017: 1887−1896. DOI: 10.12783/ballistics2017/16966.
    [6] 苗润源, 梁争峰. 防空反导用多爆炸成型弹丸技术现状与发展 [J]. 飞航导弹, 2017(7): 89–93. DOI: 10.16338/j.issn.1009-1319.2017.07.19.

    MIAO R Y, LIANG Z F. Current situation and development of multiple explosive shaped projectile technology for air defense and antimissile [J]. Aerodynamic Missile Journal, 2017(7): 89–93. DOI: 10.16338/j.issn.1009-1319.2017.07.19.
    [7] 奥尔连科. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011
    [8] AHMED M, MALIK A Q. A review of works on shaped charges [J]. Engineering, Technology and Applied Science Research, 2017, 7(5): 2098–2103. DOI: 10.48084/etasr.1532.
    [9] WEIMANN K. Research and development in the area of explosively formed projectiles charge technology [J]. Propellants, Explosives, Pyrotechnics, 1993, 18(5): 294–298. DOI: 10.1002/prep.19930180511.
    [10] 松全才, 金韶华, 李文. 俄罗斯切割索的现状 [J]. 爆炸与冲击, 1997, 17(4): 382–388.

    SONG Q C, JIN S H, LI W. Manufacture of cutting explosives in Russia [J]. Explosion and Shock Waves, 1997, 17(4): 382–388.
    [11] HAYES G A. Linear shaped-charge (LSC) collapse model [J]. Journal of Materials Science, 1984, 19(9): 3049–3058. DOI: 10.1007/BF01026984.
    [12] SEOKBIN L, PAUL W. An investigation of the characteristics of linear shaped charges used in demolition [C]// Proceedings of the 29th Annual Conference on Explosives and Blasting Technique, 2003: 297−306.
    [13] CHASE J B, KUKLO R M, SHAW L L, et al. High resolution diagnostics of a linear shaped charge jet [C]// 18th International Symposium and Exhibition on Ballistics. San Antonio: Lawrence Livermore National Lab, 1999, 1: 442–448.
    [14] 曾新吾, 薛鸿陆. 线型聚能装药的理论研究 [J]. 爆炸与冲击, 1988, 8(2): 97–105.

    ZENG X W, XUE H L. A theoretical study on linear shaped charge [J]. Explosion and Shock Waves, 1988, 8(2): 97–105.
    [15] 李彬峰, 潘国斌. 聚能罩壁厚对切割深度的影响 [J]. 爆破器材, 1999, 28(6): 16–19. DOI: 10.3969/j.issn.1001-8352.1999.06.005.

    LI B F, PAN G B. A study of the influence of wall thickness of shaped charge liner on the depth of cutting [J]. Explosive Materials, 1999, 28(6): 16–19. DOI: 10.3969/j.issn.1001-8352.1999.06.005.
    [16] 祝逢春, 邓振礼, 胡瑜. 线性聚能装药切割航空炸弹可靠性评估 [J]. 火工品, 2000, 11(2): 24–26. DOI: 10.3969/j.issn.1003-1480.2000.02.007.

    ZHU F C, DENG Z L, HU Y. Reliability assessment on cutting aerial bombs using linear shaped charge [J]. Initiators and Pyrotechnics, 2000, 11(2): 24–26. DOI: 10.3969/j.issn.1003-1480.2000.02.007.
    [17] 苟瑞君, 赵国志, 杜忠华, 等. 线性成型装药的威力研究 [J]. 爆破器材, 2005, 34(5): 25–28. DOI: 10.3969/j.issn.1001-8352.2005.05.009.

    GOU R J, ZHAO G Z, DU Z H, et al. Study on the power of linear shaped charge [J]. Explosive Materials, 2005, 34(5): 25–28. DOI: 10.3969/j.issn.1001-8352.2005.05.009.
    [18] 苟瑞君, 赵国志. 线性成型装药起爆方式的比较 [J]. 火工品, 2006(1): 42–45. DOI: 10.3969/j.issn.1003-1480.2006.01.013.

    GOU R J, ZHAO G Z. Comparison of linear shaped charge initiation manners [J]. Initiators and Pyrotechnics, 2006(1): 42–45. DOI: 10.3969/j.issn.1003-1480.2006.01.013.
    [19] 陶钢, 朱鹤荣, 石连捷, 等. 爆炸成型弹丸药型罩结构分析 [J]. 弹道学报, 1995, 7(3): 84–86,93.

    TAO G, ZHU H R, SHI L J, et al. On the analysis of the shape for the EFP’s liner [J]. Journal of Ballistics, 1995, 7(3): 84–86,93.
    [20] 苟瑞君. 线性爆炸成型侵彻体形成机理研究[D]. 南京: 南京理工大学, 2006

    GOU R J. Forming mechanism of linear explosively formed penetrator [D]. Nanjing: Nanjing University of Science and Technology, 2006.
    [21] 杜忠华, 段卫毅. 起爆方式对LEFP成型及侵彻影响的数值模拟研究 [J]. 南京理工大学学报(自然科学版), 2009, 33(6): 756–759. DOI: 10.3969/j.issn.1005-9830.2009.06.009.

    DU Z H, DUAN W Y. Numerical simulation on formation and penetration effect of LEFP by blast ways [J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(6): 756–759. DOI: 10.3969/j.issn.1005-9830.2009.06.009.
    [22] 段卫毅. 线性爆炸成型侵彻体成型机理与侵彻研究[D]. 南京: 南京理工大学, 2009

    DUAN W Y. Study on the formation mechanism and penetration of linear explosively formed penetrators [D]. Nanjing: Nanjing University of Science and Technology, 2009.
    [23] 高接东. 基于变壁厚药型罩的LEFP成型机理研究[D]. 南京: 南京理工大学, 2013

    GAO J D. Study on LEFP forming mechanism based on variable wall thickness liner [D]. Nanjing: Nanjing University of Science and Technology, 2013.
    [24] JOO J, CHOI J, KOO M, et al. Numerical analysis of penetration reduction of a long rod penetrator impacted by a linear explosively formed penetrator [C]// Proceedings of the 30th International Symposium on Ballistics. Long Beach: Destech, 2017: 1887−1896.
    [25] JOO J, CHOI J, KOO M, et al. Numerical analysis on penetration reduction of a WHA penetrator by an impact of linear explosively formed penetrator (LEFP) [J]. Journal of the Korea Institute of Military Science and Technology, 2017, 20(3): 384–392.
    [26] LI Y S, HUANG Z H, SHI A S, et al. Deformation and fracture failure of a high-speed long rod intercepted by linear explosively formed penetrators sequence [J]. Materials, 2020, 13(22): 5086. DOI: 10.3390/ma13225086.
    [27] 周涛, 王康康, 杜忠华, 等. 起爆方式对线性成型装药爆炸威力的影响 [J]. 火炸药学报, 2014, 37(2): 37–42. DOI: 10.3969/j.issn.1007-7812.2014.02.008.

    ZHOU T, WANG K K, DU Z H, et al. Effect of initiation way on the blasting power of linear shaped charge [J]. Chinese Journal of Explosives and Propellants, 2014, 37(2): 37–42. DOI: 10.3969/j.issn.1007-7812.2014.02.008.
    [28] 刘杰, 杜忠华, 王锋, 等. 基于爆轰波碰撞形成LEFP的研究 [J]. 工程力学, 2014, 31(8): 235–242. DOI: 10.6052/j.issn.1000-4750.2013.03.0198.

    LIU J, DU Z H, WANG F, et al. Linear explosively-formed penetrators based on detonation wave collision [J]. Engineering Mechanics, 2014, 31(8): 235–242. DOI: 10.6052/j.issn.1000-4750.2013.03.0198.
    [29] 王锋. 基于爆轰波对撞原理的新型EFP研究[D]. 南京: 南京理工大学, 2012

    WANG F. Research on new EFP based on detonation wave collision principle [D]. Nanjing: Nanjing University of Science and Technology, 2012
    [30] CAO Y W, SUN X Y, YUAN B H, et al. Study on design and performance of linear EFP warhead [C]// Proceedings of the 28th International Symposium on Ballistics. Atlanta Georgia: DEStech Publishing, 2014: 173−178.
    [31] 张明丛. 周向MLEFP成型机理研究[D]. 南京: 南京理工大学, 2015

    ZHANG M C. Study on forming mechanism of circumferential MLEFP [D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [32] 张明丛, 杜忠华, 周涛, 等. 药型罩结构参数对周向多线性爆炸成型弹丸成型及侵彻能力的影响 [J]. 火炸药学报, 2016, 39(1): 60–65,69. DOI: 10.14077/j.issn.1007-7812.2016.01.011.

    ZHANG M C, DU Z H, ZHOU T, et al. Influence of liner structural parameters on formation and penetration of the circumferential multiple linear explosive formation penetration [J]. Chinese Journal of Explosives and Propellants, 2016, 39(1): 60–65,69. DOI: 10.14077/j.issn.1007-7812.2016.01.011.
    [33] 王康康. 基于线性装药的大威力EFP研究[D]. 南京: 南京理工大学, 2015

    WANG K K. Research on EFP based on linear charge [D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [34] 李鹏, 袁宝慧, 李刚, 等. 一种杆式周向多爆炸成型弹丸战斗部仿真及实验研究 [J]. 南京理工大学学报, 2017, 41(6): 681–685. DOI: 10.14177/j.cnki.32-1397n.2017.41.06.003.

    LI P, YUAN B H, LI G, et al. Simulation and experimental study on warhead of rod-shaped circumferential multiple explosively formed penetrator [J]. Journal of Nanjing University of Science and Technology, 2017, 41(6): 681–685. DOI: 10.14177/j.cnki.32-1397n.2017.41.06.003.
    [35] 李鹏, 袁宝慧. 爆炸成型杆式弹丸战斗部技术研究[C]// 第15届全国战斗部与毁伤技术学术交流会论文集. 北京, 2017, 11: 305-307

    LI P, YUAN B H. Research on the warhead numerical simulation of a rod type circumferential multiple explosively formed projectile [C]// Proceedings of the 15th National Symposium on Warhead and Damage Technology. Beijing, 2017, 11: 305−307.
    [36] 威廉·普·沃尔特斯, 乔纳斯·埃·朱卡斯. 成型装药原理及其应用[M]. 王树魁, 贝静芬, 译. 北京: 兵器工业出版社, 1992.

    WALTERS, ZUKAS. Fundamentals of shaped charges [M]. WANG S K, BEI J F, trans. Beijing: Weapons Industry Press, 1992.
    [37] 王树山. 终点效应学[M]. 北京: 科学出版社, 2019.

    WANG S S. Terminal effects [M]. Beijing: Science Press, 2019.
    [38] 张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993.
    [39] 苗润源, 李有仓, 梁争峰. 药型罩曲率半径对周向线性多爆炸成型弹丸成型性能及毁伤效应的影响 [J]. 科学技术与工程, 2017, 17(31): 235–238. DOI: 10.3969/j.issn.1671-1815.2017.31.038.

    MIAO R Y, LI Y C, LIANG Z F. Liner radius’ influence on circumferential linear multiple explosively formed projectiles' forming performance and damage effects [J]. Science Technology and Engineering, 2017, 17(31): 235–238. DOI: 10.3969/j.issn.1671-1815.2017.31.038.
    [40] 苗润源, 梁争峰, 程淑杰. 速度梯度对周向MLEFP的成型性能影响分析[C]// 第十六届战斗部与毁伤技术学术交流会论文集. 昆明, 2019: 276−278.

    MIAO R Y, LIANG Z F, CHENG S J. Analysis of the influence of velocity gradient on the forming performance of circumferential MLEFP [C]// Proceedings of the 16th Academic Conference on Warhead and Damage Technology. Kunming, 2019: 276−278.
    [41] 陈曦, 刘杰, 杜忠华, 等. 两端起爆下曲率药型罩线性装药的成型特性 [J]. 火炸药学报, 2018, 41(5): 441–446. DOI: 10.14077/j.issn.1007-7812.2018.05.003.

    CHEN X, LIU J, DU Z H, et al. Forming characteristics of linear charge with curved liner under two-end initiation [J]. Chinese Journal of Explosives and Propellants, 2018, 41(5): 441–446. DOI: 10.14077/j.issn.1007-7812.2018.05.003.
    [42] 李鹏, 袁宝慧, 李刚, 等. 一种杆式周向多爆炸成型弹丸战斗部数值模拟研究 [J]. 弹箭与制导学报, 2017, 37(1): 69–72. DOI: 10.15892/j.cnki.djzdxb.2017.01.016.

    LI P, YUAN B H, LI G, et al. Research on the warhead numerical simulation of a rod type circumferential multiple explosively formed projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(1): 69–72. DOI: 10.15892/j.cnki.djzdxb.2017.01.016.
    [43] 李鹏, 李刚, 袁宝慧, 等. 一种杆式多爆炸成型侵彻体战斗部 [J]. 爆炸与冲击, 2018, 38(4): 883–890. DOI: 10.11883/bzycj-2016-0356.

    LI P, LI G, YUAN B H, et al. A rod-shaped explosively formed penetrator warhead [J]. Explosion and Shock Waves, 2018, 38(4): 883–890. DOI: 10.11883/bzycj-2016-0356.
    [44] 李鹏, 袁宝慧, 丁刚, 等. LEFP战斗部毁伤元成型及初速分析研究 [J]. 科学技术与工程, 2017, 17(10): 188–191. DOI: 10.3969/j.issn.1671-1815.2017.10.032.

    LI P, YUAN B H, DING G, et al. The study of linear explosively formed penetrators warhead kill element on forming and initial velocity [J]. Science Technology and Engineering, 2017, 17(10): 188–191. DOI: 10.3969/j.issn.1671-1815.2017.10.032.
    [45] 史云鹏, 袁宝慧, 梁争峰, 等. 线形EFP药型罩设计 [J]. 火炸药学报, 2007, 30(3): 37–40,44. DOI: 10.3969/j.issn.1007-7812.2007.03.010.

    SHI Y P, YUAN B H, LIANG Z F, et al. The design of linear EFP liner [J]. Chinese Journal of Explosives & Propellants, 2007, 30(3): 37–40,44. DOI: 10.3969/j.issn.1007-7812.2007.03.010.
    [46] 李鹏, 李刚, 袁宝慧, 等. 旋转对爆炸成型杆式侵彻体毁伤威力的影响 [J]. 爆炸与冲击, 2018, 38(3): 616–621. DOI: 10.11883/bzycj-2016-0263.

    LI P, LI G, YUAN B H, et al. Influence of rotation on damage power of an explosively-formed rod-like penetrator [J]. Explosion and Shock Waves, 2018, 38(3): 616–621. DOI: 10.11883/bzycj-2016-0263.
    [47] 李鹏, 袁宝慧, 李刚, 等. 新型多线形爆炸成型弹丸战斗部的弹丸成型及毁伤研究 [J]. 火炸药学报, 2017, 40(1): 65–68;80. DOI: 10.14077/j.issn.1007-7812.2017.01.013.

    LI P, YUAN B H, LI G, et al. Study on the formation of penetrators and damage of a new type of multiple linear explosively formed penetrator warhead [J]. Chinese Journal of Explosives and Propellants, 2017, 40(1): 65–68;80. DOI: 10.14077/j.issn.1007-7812.2017.01.013.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  456
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回