Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

加载速率对40Cr钢Ⅱ型动态断裂特性的影响

范昌增 许泽建 何晓东 黄风雷

李润之, 黄子超, 司荣军. 环境温度对瓦斯爆炸压力及压力上升速率的影响[J]. 爆炸与冲击, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05
引用本文: 范昌增, 许泽建, 何晓东, 黄风雷. 加载速率对40Cr钢Ⅱ型动态断裂特性的影响[J]. 爆炸与冲击, 2021, 41(8): 083101. doi: 10.11883/bzycj-2021-0029
Li Run-zhi, Huang Zi-chao, Si Rong-jun. Influence of environmental temperature on gas explosion pressure and its rise rate[J]. Explosion And Shock Waves, 2013, 33(4): 415-419. doi: 10.11883/1001-1455(2013)04-0415-05
Citation: FAN Changzeng, XU Zejian, HE Xiaodong, HUANG Fenglei. Effect of loading rate on the mode dynamic fracture characteristics of 40Cr steel[J]. Explosion And Shock Waves, 2021, 41(8): 083101. doi: 10.11883/bzycj-2021-0029

加载速率对40Cr钢Ⅱ型动态断裂特性的影响

doi: 10.11883/bzycj-2021-0029
基金项目: 国家自然科学基金(11772062,12072040)
详细信息
    作者简介:

    范昌增(1996- ),男,硕士研究生,fanfancy0928@163.com

    通讯作者:

    许泽建(1979- ),男,博士,副教授,xuzejian@bit.edu.cn

  • 中图分类号: O346.1

Effect of loading rate on the mode dynamic fracture characteristics of 40Cr steel

  • 摘要: 采用新型Ⅱ型动态断裂测试技术,对高强钢40Cr在高加载速率下的Ⅱ型动态断裂特性进行了测试研究。基于新设计的Ⅱ型动态断裂试样和分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)技术,通过实验-数值方法确定了裂尖在加载过程中的应力强度因子曲线。采用应变片法确定了试样的起裂时间,最终得到40Cr的Ⅱ型动态断裂韧性值,并对其加载速率相关性和材料的失效机理进行了研究。结果表明,在1.08~5.53 TPa·m1/2/s的加载速率范围内,40Cr的Ⅱ型动态断裂韧性基本表现为与加载速率成正相关的变化趋势。通过对试样断口形貌的分析,确定了材料的失效模式及机理,发现随着加载速率的增加,存在拉伸型失效向绝热剪切型失效模式转变的现象。
  • 图  1  Ⅱ型断裂试样几何尺寸(单位:mm)

    Figure  1.  Geometric dimensions of the mode Ⅱ fracture specimen (unit: mm)

    图  2  典型实验信号(4.86 TPa·m1/2/s)

    Figure  2.  Typical experimental signals (4.86 TPa·m1/2/s)

    图  3  试样拉伸起裂的典型信号(1.25 TPa·m1/2/s)

    Figure  3.  Typical signals of tensile fracture initiation of a specimen (1.25 TPa·m1/2/s)

    图  4  试样绝热剪切起裂的典型信号(4.86 TPa·m1/2/s)

    Figure  4.  Typical signals of ASB initiation of a specimen (4.86 TPa·m1/2/s)

    图  5  拉伸型起裂(1.25 TPa·m1/2/s)与ASB型起裂(4.86 TPa·m1/2/s)的高速摄影图

    Figure  5.  High-speed photographic images of tensile fracture initiation (1.25 TPa·m1/2/s) and ASB initiation (4.86 TPa·m1/2/s)

    图  6  试样裂尖网格细化

    Figure  6.  Mesh refinement of the specimen crack tips

    图  7  试样的实测应变与模拟应变

    Figure  7.  The measured strain and simulated strain of the specimen

    图  8  子弹速度与起裂时间的关系

    Figure  8.  Relationship between bullet velocity and crack initiation time

    图  9  不同加载速率下的DSIF曲线

    Figure  9.  DSIF curves at different loading rates

    图  10  不同加载方式下的DFT与加载速率关系图

    Figure  10.  Relationship between DFT and loading rate under different loading methods

    图  11  不同断口形貌特征的DFT与加载速率关系图

    Figure  11.  Relationship between DFT and loading rate of different fracture morphology characteristics

    图  12  40Cr试样沿晶断裂及A区放大图(1.25 TPa·m1/2/s)

    Figure  12.  Intergranular fracture of 40Cr specimen and magnification of location A (1.25 TPa·m1/2/s)

    图  13  40Cr试样韧性断裂特征(2.92 TPa·m1/2/s)

    Figure  13.  Ductile fracture characteristics of 40Cr specimen (2.92 TPa·m1/2/s)

    图  14  40Cr试样绝热剪切型断裂特征(3.87 TPa·m1/2/s)

    Figure  14.  Adiabatic shear fracture characteristics of 40Cr specimen (3.87 TPa·m1/2/s)

    表  1  高强钢40Cr的元素成分及质量分数

    Table  1.   Composition and mass fraction of high-strength steel 40Cr

    w(C)/%w(Mn)/%w(Si)/%w(Cr)/%w(Ni)/%
    0.37~0.450.50~0.800.20~0.400.80~1.10
    下载: 导出CSV

    表  2  高强钢40Cr的力学性能参数

    Table  2.   Mechanical properties of high strength steel 40Cr

    材料ρ/(kg·m−3)E/GPa μσb/MPa
    40Cr78201990.31987
    下载: 导出CSV

    表  3  入射杆、透射杆的力学性能参数

    Table  3.   Mechanical properties of the incident and transmission bars

    材料ρ/(kg·m−3E/GPa μ
    18Ni80001900.3
    下载: 导出CSV

    表  4  高强钢40Cr的动态断裂韧性值

    Table  4.   Dynamic fracture toughness values of high strength steel 40Cr

    L/mp/MPatf/µsKⅡd/(MPa·m1/2˙Kd/(TPa·m1/2/s)
    0.3800.182729.21.08
    0.3800.192632.61.25
    0.3800.222237.51.70
    0.2030.181940.22.12
    0.2030.201749.42.92
    0.2030.221651.03.19
    0.1000.141350.33.87
    0.1000.161153.54.86
    0.1000.181055.35.53
     注: L为子弹长度,p为气压,tf为起裂时间,KⅡd为Ⅱ型断裂韧性,˙Kd为加载速率
    下载: 导出CSV

    表  5  不同断口形貌下DFT与加载速率的线性拟合参数

    Table  5.   Linear fitting parameters of DFT and the loading rates under different fracture morphology

    材料断口类型Ab
    40Cr脆性12.8815.80
    韧性 9.9819.94
    绝热剪切型 2.0943.39
    下载: 导出CSV
  • [1] 黄浩. 40Cr表面激光熔覆硬质涂层及其应用研究[D]. 河北秦皇岛: 燕山大学, 2016.
    [2] KALTHOFF J F. Shadow optical analysis of dynamic shear fracture [J]. Optical Engineering, 1988, 27(10): 271035. DOI: 10.1117/12.7976772.
    [3] KALTHOFF J F. Transition in the failure behavior of dynamically shear loaded cracks [J]. Applied Mechanics Reviews, 1990, 43(S5): 47–50. DOI: 10.1115/1.3120818.
    [4] KALTHOFF J F. Modes of dynamic shear failure in solids [J]. International Journal of Fracture, 2000, 101(1): 1–31. DOI: 10.1023/A: 1007647800529.
    [5] KALTHOFF J F, BÜRGEL A. Influence of loading rate on shear fracture toughness for failure mode transition [J]. International Journal of Impact Engineering, 2004, 30(8): 957–971. DOI: 10.1016/j.ijimpeng.2004.05.004.
    [6] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates—Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
    [7] ZHOU M, RAVICHANDRAN G, ROSAKIS A J. Dynamically propagating shear bands in impact-loaded prenotched plates—Ⅱ. numerical simulations [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 1007–1021, 1023-1032. DOI: 10.1016/0022-5096(96)00004-X.
    [8] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. On the growth of shear bands and failure-mode transition in prenotched plates: a comparison of singly and doubly notched specimens [J]. International Journal of Plasticity, 1998, 14(4): 435–451. DOI: 10.1016/S0749-6419(98)00003-5.
    [9] RAVI-CHANDAR K. On the failure mode transitions in polycarbonate under dynamic mixed-mode loading [J]. International Journal of Solids and Structures, 1995, 32(6): 925–938. DOI: 10.1016/0020-7683(94)00169-W.
    [10] RAVI-CHANDAR K, LU J, YANG B, et al. Failure mode transitions in polymers under high strain rate loading [J]. International Journal of Fracture, 2000, 101(1): 33–72. DOI: 10.1023/A: 1007581101315.
    [11] MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials, 1994, 17(2): 135–145. DOI: 10.1016/0167-6636(94)90054-X.
    [12] CHU D Y, LI X, LIU Z L, et al. A unified phase field damage model for modeling the brittle-ductile dynamic failure mode transition in metals [J]. Engineering Fracture Mechanics, 2019, 212: 197–209. DOI: 10.1016/j.engfracmech.2019.03.031.
    [13] CHIANG F. Moiré and speckle methods applied to elastic-plastic fracture studies[C]//Experimental Techniques in Fracture Mechanics. New York: VCH, 1993: 291-325.
    [14] SANFORD R J. Determining fracture parameters with full-field optical methods [J]. Experimental Mechanics, 1989, 29(3): 241–247. DOI: 10.1007/BF02321401.
    [15] PATTERSON E A, OLDEN E J. Optical analysis of crack tip stress fields: a comparative study [J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(7): 623–635. DOI: 10.1111/j.1460-2695.2004.00774.X.
    [16] MA L, KOBAYASHI A S, ATLURI S N, et al. Crack linkup: an experimental analysis [J]. Experimental Mechanics, 2002, 42(2): 147–152. DOI: 10.1007/BF02410876.
    [17] GOECKE K E, MOSHIER M A. A technique to measure fatigue crack growth threshold [J]. Experimental Mechanics, 2002, 42(2): 182–185. DOI: 10.1007/BF02410881.
    [18] 王洪山. 几种实用的断裂试验方法 [J]. 理化检验-物理分册, 2001, 37(7): 292–294. DOI: 10.3969/j.issn.1001-4012.2001.07.005.

    WANG H S. Some kinds of practical fracture test methods [J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2001, 37(7): 292–294. DOI: 10.3969/j.issn.1001-4012.2001.07.005.
    [19] 姜风春, 刘瑞堂. 动态断裂韧性测试方法的有效性分析 [J]. 哈尔滨工程大学学报, 1999, 20(3): 97–101. DOI: 10.3969/j.issn.1006-7043.1999.03.017.

    JIANG F C, LIU R T. Analysis of validity of dynamic fracture toughness measurement [J]. Journal of Harbin Engineering University, 1999, 20(3): 97–101. DOI: 10.3969/j.issn.1006-7043.1999.03.017.
    [20] 郑坚, 王泽平, 段祝平. 动态断裂的加载和测试技术 [J]. 力学进展, 1994, 24(4): 459–475. DOI: 10.6052/1000-0992-1994-4-j1994-042.

    ZHENG J, WANG Z P, DUAN Z P. Loading and measuring techniques indynamic fracture testing [J]. Advances in Mechanics, 1994, 24(4): 459–475. DOI: 10.6052/1000-0992-1994-4-j1994-042.
    [21] 许泽建, 李玉龙, 刘元镛, 等. 两种高强钢在高加载速率下的Ⅱ型动态断裂韧性 [J]. 金属学报, 2006, 42(6): 635–640. DOI: 10.3321/j.issn: 0412-1961.2006.06.013.

    XU Z J, LI Y L, LIU Y Y, et al. Mode Ⅱ dynamic fracture toughness of two high strength steels under high loading rate [J]. Acta Metallurgica Sinica, 2006, 42(6): 635–640. DOI: 10.3321/j.issn: 0412-1961.2006.06.013.
    [22] 许泽建, 黄风雷, 何晓东. 一种用于纯Ⅱ型动态断裂的试验件: CN201820669843.4 [P]. 2018-12-11.
    [23] XU Z J, HE X D, HAN Y, et al. A different viewpoint on mechanism of fracture to shear-banding failure mode transition [J]. Journal of the Mechanics and Physics of Solids, 2020, 145: 104165. DOI: 10.1016/j.jmps.2020.104165.
    [24] XU Z J, HAN Y, FAN C Z, et al. Dynamic shear fracture toughness and failure characteristics of Ti-6Al-4V alloy under high loading rates [J]. Mechanics of Materials, 2021, 154: 103718. DOI: 10.1016/j.mechmat.2020.103718.
    [25] JIANG F C, VECCHIO K S. Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests [J]. Applied Mechanics Reviews, 2009, 62(6): 060802. DOI: 10.1115/1.3124647.
    [26] BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories, and applications [M]. Oxford: Pergamon Press, 1992: 73−75.
    [27] NEMAT-NASSER S, ISAACS J B, STARRETT J E. Hopkinson techniques for dynamic recovery experiments [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1991, 435(1894): 371–379. DOI: 10.1098/rspa.1991.0150.
  • 期刊类型引用(19)

    1. 甘海龙. 喷水螺杆压缩机在瓦斯压缩中的应用研究. 煤化工. 2023(02): 41-43+52 . 百度学术
    2. 甘海龙. 瓦斯气利用发电机尾气余热降温脱水对发电功率的影响研究. 煤化工. 2023(04): 50-52+57 . 百度学术
    3. 罗振敏,刘利涛,王涛,张江,程方明. C_2H_6、C_2H_4、CO与H_2对甲烷爆炸压力及动力学特性影响. 工程科学学报. 2022(03): 339-347 . 百度学术
    4. 胡芳芳,贾月,王文涛,蒋八运,李世周,程扬帆. 受限空间内乙炔/空气预混气体燃爆特性研究. 火工品. 2022(06): 50-55 . 百度学术
    5. 杨龙龙,刘艳,杨春丽. 不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征. 爆炸与冲击. 2021(02): 166-175 . 本站查看
    6. 王秋红,王二飞,陈晓坤,蒋军成,张明广. 管道内瓦斯爆炸火焰传播压力与温度特性. 中南大学学报(自然科学版). 2020(01): 239-247 . 百度学术
    7. 王晓彬. 点火延迟时间对甲烷煤尘爆炸特性的影响. 煤矿安全. 2020(03): 23-27 . 百度学术
    8. 陈国华,董浩宇,张强,赵一新,胡盛,李少鹏. 狭长受限空间甲烷-空气爆炸事故研究评述. 安全与环境学报. 2020(03): 946-959 . 百度学术
    9. 孙从煌,曲艳东. 特征管内H_2/Air预混气体燃爆特性数值模拟研究. 爆破. 2020(04): 155-165 . 百度学术
    10. 吕鹏飞,张家旭,马利克·哈力木,张瑾,庞磊,杨凯,吕则恺. 初始温度和压力对排污空间甲烷-空气混合物爆燃特性影响的模拟研究. 中国安全生产科学技术. 2019(06): 18-23 . 百度学术
    11. 罗振敏,王涛,文虎,张江,程方明,赵婧昱,王秋红,王亚超,刘长春. CO对CH_4爆炸及自由基发射光谱特性的影响. 煤炭学报. 2019(07): 2167-2177 . 百度学术
    12. 白刚,周西华,宋东平. 温度与CO气体耦合作用对瓦斯爆炸界限影响实验. 高压物理学报. 2019(04): 189-196 . 百度学术
    13. 陈柏封,刘东洋,贺仰琪. 管道瓦斯爆炸冲击波压力传播特性实验研究. 内蒙古煤炭经济. 2018(14): 18-19+10 . 百度学术
    14. 曲艳东,孙从煌,朱凯泽,孔祥清,章文娇. 气相爆轰合成纳米TiO_2粉末的实验研究. 稀有金属与硬质合金. 2017(06): 48-53 . 百度学术
    15. 高娜,胡毅亭,张延松. 初始温度对甲烷-空气爆炸压力影响的试验研究. 爆破器材. 2016(03): 26-30 . 百度学术
    16. 高娜,张延松,胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究. 爆炸与冲击. 2016(02): 218-223 . 本站查看
    17. 张玉磊,李芝绒,蒋海燕,翟红波,袁建飞,仲凯. 初始压力对TNT密闭空间爆炸温度的影响. 火工品. 2016(06): 44-47 . 百度学术
    18. 张迎新,李世超. 煤尘影响瓦斯爆炸冲击波的实验研究. 黑龙江科技大学学报. 2016(04): 387-390 . 百度学术
    19. 杨凯,丁志江,肖立春,李强. 发生炉煤气在电除尘器中爆炸与泄爆过程的数值模拟. 燕山大学学报. 2015(02): 182-188 . 百度学术

    其他类型引用(29)

  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  700
  • HTML全文浏览量:  353
  • PDF下载量:  86
  • 被引次数: 48
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-04-21
  • 网络出版日期:  2021-07-20
  • 刊出日期:  2021-08-05

目录

    /

    返回文章
    返回