阻尼对空爆荷载等效静载动力系数的影响

耿少波 罗干 陈佳龙 赵洲

耿少波, 罗干, 陈佳龙, 赵洲. 阻尼对空爆荷载等效静载动力系数的影响[J]. 爆炸与冲击, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036
引用本文: 耿少波, 罗干, 陈佳龙, 赵洲. 阻尼对空爆荷载等效静载动力系数的影响[J]. 爆炸与冲击, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036
GENG Shaobo, LUO Gan, CHEN Jialong, ZHAO Zhou. Effect of damping on equivalent static load dynamic factor of air blast load[J]. Explosion And Shock Waves, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036
Citation: GENG Shaobo, LUO Gan, CHEN Jialong, ZHAO Zhou. Effect of damping on equivalent static load dynamic factor of air blast load[J]. Explosion And Shock Waves, 2022, 42(2): 023201. doi: 10.11883/bzycj-2021-0036

阻尼对空爆荷载等效静载动力系数的影响

doi: 10.11883/bzycj-2021-0036
基金项目: 国家自然科学基金(51408558)
详细信息
    作者简介:

    耿少波(1982- ),男,博士,副教授,gengshaobo@nuc.edu.cn

  • 中图分类号: O383.2

Effect of damping on equivalent static load dynamic factor of air blast load

  • 摘要: 为考查阻尼参数对空爆荷载等效静载动力系数的影响,理论推导了空爆荷载下结构等效单自由体系弹塑性位移解及延性比解,设计并计算了阻尼比0.000 1~0.1、延性比1~4的20种典型工况的动力系数,并与现行抗爆设计规范动力系数公式结果进行了对比。结果表明:阻尼比小于0.000 1时可基本代表无阻尼状态,阻尼比0.01的动力系数比无阻尼的最大降低幅度为2.08%,数值差异很小,因此阻尼比为0.01以内时,可忽略阻尼对动力系数的影响;阻尼比0.05的动力系数比无阻尼的降低幅度约9.92%,数值差异较大,认为阻尼比0.05以上时将具有明显的经济效益;现行设计规范动力系数更适用于柔性结构体系,运用于刚性结构抗爆设计时,计算误差较大,对阻尼比较小的结构设计更不利。
  • 图  1  理想弹塑性的含阻尼等效单自由度体系

    Figure  1.  Elastic-perfectly plastic SDOF vibration system with damping

    图  2  本文工况计算结果与文献公式的比较

    Figure  2.  Comparison of the results from the calculation cases and from the code formula

    图  3  本文工况计算结果的相对误差

    Figure  3.  Relative errors of the calculation cases

    表  1  典型工况

    Table  1.   Typical calculation cases

    工况阻尼比 ξ延性比 β工况阻尼比 ξ延性比 β工况阻尼比 ξ延性比 β工况阻尼比 ξ延性比 β
    C10.00011C60.00012C110.00013C160.00014
    C20.0011C70.0012C120.0013C170.0014
    C30.011C80.012C130.013C180.014
    C40.051C90.052C140.053C190.054
    C50.11C100.12C150.13C200.14
    下载: 导出CSV
  • [1] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 人民防空地下室设计规范: GB 50038–2005 [S]. 北京: 中国标准出版社, 2006.
    [2] US Army Corps of Engineers. Structures to resist the effects of accidental explosions: TM5–1300 [S]. Washington: Department of the Army, 1990.
    [3] Canadian Standards Association. Design and assessment of buildings subjects to blast loads: CSA/S 850–12 [S]. Ontario: CSA, 2012.
    [4] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009–2012 [S]. 北京: 中国建筑工业出版社, 2012.
    [5] BIGGS J M. Introduction to structural dynamics [M]. New York: McGraw-Hill Book Company, 1964: 315−327.
    [6] GANTES C J, PNEVMATIKOS N G. Elastic-plastic response spectra for exponential blast loading [J]. International Journal of Impact Engineering, 2004, 30(3): 323–343. DOI: 10.1016/S0734-743X(03)00077-0.
    [7] RIEDEL W, FISCHER K, KRANZER C, et al. Modeling and validation of a wall-window retrofit system under blast loading [J]. Engineering Structures, 2012, 37: 235–245. DOI: 10.1016/j.engstruct.2011.12.015.
    [8] 方秦, 杜茂林. 爆炸荷载作用下弹性与阻尼支承梁的动力响应 [J]. 力学与实践, 2006, 28(2): 53–56. DOI: 10.3969/j.issn.1000-0879.2006.02.012.

    FANG Q, DU M L. Dynamic responses of an elastically supported beams with damping subjected to blast loads [J]. Mechanics in Engineering, 2006, 28(2): 53–56. DOI: 10.3969/j.issn.1000-0879.2006.02.012.
    [9] 方秦, 陈力, 杜茂林. 端部设置弹簧和阻尼器提高防护门抗力的理论与数值分析 [J]. 工程力学, 2008, 25(3): 194–199,221.

    FANG Q, CHEN L, DU M L. Theoretical and numerical investigations in effects of end-supported springs and dampers on increasing resistance of blast doors [J]. Engineering Mechanics, 2008, 25(3): 194–199,221.
    [10] 郭东, 刘晶波, 闫秋实. 爆炸荷载作用下梁板结构反弹机理分析 [J]. 建筑结构学报, 2012, 33(2): 64–71. DOI: 10.14006/j.jzjgxb.2012.02.009.

    GUO D, LIU J B, YAN Q S. Rebound mechanism analysis in beams and slabs subjected to blast loading [J]. Journal of Building Structures, 2012, 33(2): 64–71. DOI: 10.14006/j.jzjgxb.2012.02.009.
    [11] 陈万祥, 郭志昆, 叶均华. 爆炸荷载作用下柔性边界钢筋混凝土梁的动力响应与破坏模式分析 [J]. 兵工学报, 2011, 32(10): 1271–1277.

    CHEN W X, GUO Z K, YE J H. Dynamic responses and failure modes of reinforced concrete beams with flexible supports under blast loading [J]. Acta Armamentarii, 2011, 32(10): 1271–1277.
    [12] 董彬, 李志军, 魏同. 爆炸荷载下建筑结构的振动控制及分析 [J]. 西安工业大学学报, 2020, 40(4): 404–409. DOI: 10.16185/j.jxatu.edu.cn.2020.04.006.

    DONG B, LI Z J, WEI T. Vibration control and analysis of structure under explosion load [J]. Journal of Xi’an Technological University, 2020, 40(4): 404–409. DOI: 10.16185/j.jxatu.edu.cn.2020.04.006.
    [13] 杜志鹏, 汪玉, 杜俭业, 等. 舰船水下爆炸鞭状运动中的阻尼效应 [J]. 船海工程, 2008, 37(5): 95–98. DOI: 10.3963/j.issn.1671-7953.2008.05.027.

    DU Z P, WANG Y, DU J Y, et al. Damping effects on the whipping response of warship subjected to an underwater explosion [J]. Ship and Ocean Engineering, 2008, 37(5): 95–98. DOI: 10.3963/j.issn.1671-7953.2008.05.027.
    [14] LIU Y, YAN J B, HUANG F L. Behavior of reinforced concrete beams and columns subjected to blast loading [J]. Defence Technology, 2018, 14(5): 550–559. DOI: 10.1016/j.dt.2018.07.026.
    [15] NASSR A A, YAGI T, MARUYAMA T, et al. Damage and wave propagation characteristics in thin GFRP panels subjected to impact by steel balls at relatively low-velocities [J]. International Journal of Impact Engineering, 2018, 111: 21–33. DOI: 10.1016/j.ijimpeng.2017.08.007.
    [16] ZHANG F R, WU C Q, ZHAO X L, et al. Experimental study of CFDST columns infilled with UHPC under close-range blast loading [J]. International Journal of Impact Engineering, 2016, 93: 184–195. DOI: 10.1016/j.ijimpeng.2016.01.011.
    [17] LIU S F, ZHOU Y Z, ZHOU J N, et al. Blast responses of concrete beams reinforced with GFRP bars: Experimental research and equivalent static analysis [J]. Composite Structures, 2019, 226(10): 111271. DOI: 10.1016/j.compstruct.2019.111271.
    [18] NAGATA M, BEPPU M, ICHINO H, et al. Method for evaluating the displacement response of RC beams subjected to close-in explosion using modified SDOF model [J]. Engineering Structures, 2018, 157: 105–118. DOI: 10.1016/j.engstruct.2017.11.067.
    [19] SYED Z I, RAMAN S N, NGO T, et al. The failure behavior of reinforced concrete panels under far-field and near-field blast effects [J]. Structures, 2018, 14: 220–229. DOI: 10.1016/j.istruc.2018.03.009.
    [20] RITCHIE C B, PACKER J A, SEICA M V, et al. Behaviour and analysis of concrete-filled rectangular hollow sections subject to blast loading [J]. Journal of Constructional Steel Research, 2018, 147: 340–359. DOI: 10.1016/j.jcsr.2018.04.027.
    [21] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
    [22] FOGLAR M, HAJEK R, KOVAR M, et al. Blast performance of RC panels with waste steel fibers [J]. Construction and Building Materials, 2015, 94: 536–546. DOI: 10.1016/j.conbuildmat.2015.07.082.
    [23] 耿少波, 李洪, 葛培杰. 考虑跃迁的指数型炸药空爆荷载等效静载动力系数 [J]. 爆炸与冲击, 2019, 39(3): 032201. DOI: 10.11883/bzycj-2018-0048.

    GENG S B, LI H, GE P J. Equivalent static load dynamical coefficient for exponential air blast loading with transition [J]. Explosion and Shock Waves, 2019, 39(3): 032201. DOI: 10.11883/bzycj-2018-0048.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  286
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 录用日期:  2021-12-13
  • 修回日期:  2021-06-08
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回