超细晶D6A钢动态拉伸力学特性实验研究

杨泽洲 申勇峰 冯晓伟 薛文颖 谢若泽 胡艳辉

杨泽洲, 申勇峰, 冯晓伟, 薛文颖, 谢若泽, 胡艳辉. 超细晶D6A钢动态拉伸力学特性实验研究[J]. 爆炸与冲击, 2022, 42(4): 043101. doi: 10.11883/bzycj-2021-0051
引用本文: 杨泽洲, 申勇峰, 冯晓伟, 薛文颖, 谢若泽, 胡艳辉. 超细晶D6A钢动态拉伸力学特性实验研究[J]. 爆炸与冲击, 2022, 42(4): 043101. doi: 10.11883/bzycj-2021-0051
YANG Zezhou, SHEN Yongfeng, FENG Xiaowei, XUE Wenying, XIE Ruoze, HU Yanhui. Investigation on dynamic tensile properties of an ultrafine grained D6A steel[J]. Explosion And Shock Waves, 2022, 42(4): 043101. doi: 10.11883/bzycj-2021-0051
Citation: YANG Zezhou, SHEN Yongfeng, FENG Xiaowei, XUE Wenying, XIE Ruoze, HU Yanhui. Investigation on dynamic tensile properties of an ultrafine grained D6A steel[J]. Explosion And Shock Waves, 2022, 42(4): 043101. doi: 10.11883/bzycj-2021-0051

超细晶D6A钢动态拉伸力学特性实验研究

doi: 10.11883/bzycj-2021-0051
详细信息
    作者简介:

    杨泽洲(1996- ),男,硕士研究生,yangzezhou19@gscaep.ac.cn

    通讯作者:

    冯晓伟(1984- ),男,博士,副研究员,414fengxw@caep.cn

  • 中图分类号: O347.3

Investigation on dynamic tensile properties of an ultrafine grained D6A steel

  • 摘要: 为了推进超细晶D6A钢在半穿甲战斗部壳体上的应用,研究了动态加载下其宏观力学行为和细观变形机理。运用旋转盘式Hopkinson拉杆技术,开展了超细晶D6A低合金钢(平均晶粒尺寸为510 nm)的动态拉伸实验,获得了不同应变率(500~1000 s−1)下超细晶钢的应力-应变曲线。运用TEM观测微观形貌,从细观层次研究了高应变率拉伸作用下超细晶钢的动态力学特性。结果表明,超细晶D6A钢具有较高的动态拉伸强度和良好的延展性。并且,晶粒细化和纳米析出相(渗碳体)是超细晶钢同时拥有高强度和较好韧性的重要因素;在动态拉伸过程中析出的大量纳米级渗碳体,与高密度晶界共同作用限制了位错运动,从而产生额外的塑性变形抗力,有效提升了超细晶钢的强度;在塑性变形阶段超细晶钢出现的明显应力下降现象,是可动位错密度增高的结果。
  • 图  1  钢退火组织的SEM形貌

    Figure  1.  The SEM morphologies of annealing structures of the steels

    图  2  钢的晶粒尺寸分布

    Figure  2.  Grain size distributions of the steels

    图  3  超细晶D6A钢组合试件照片

    Figure  3.  Photographs of the ultrafine grained D6A steel combined specimens

    图  4  霍普金森拉杆系统

    Figure  4.  The Hopkinson tension bar system

    图  5  不同应变速率下超细晶D6A钢的工程应力-应变曲线和真实应力-应变曲线[11]

    Figure  5.  Engineering and true stress-strain curves of the ultrafine grained D6A steels at different strain rates[11]

    图  6  超细晶D6A钢的高应变率应力-应变曲线

    Figure  6.  Stress-strain curves of the ultrafine grained D6A steel at high strain rates

    图  7  超细晶D6A钢在不同应变率下的强度和延伸率

    Figure  7.  Strengths and elongations of the ultrafine grained D6A steel at different strain rates

    图  8  超细晶D6A钢加载前后的TEM形貌

    Figure  8.  The SEM morphologies of the ultrafine grained D6A steel before and after loading

    图  9  超细晶D6A钢拉伸断口形貌

    Figure  9.  The tensile fracture morphology of the ultrafine grained D6A steel

    表  1  超细晶D6A钢化学成分的质量分数

    Table  1.   Mass fractions of chemical compositions in the ultrafine grained D6A steel

    w(C)/%w(Si)/%w(Mn)/%w(Cr)/%w(Mo)/%w(Al)/%w(Ni)/%w(V)/%w(Fe)/%
    0.430.170.731.051.010.020.610.0995.89
    下载: 导出CSV

    表  2  室温下超细晶D6A钢的准静态拉伸力学参数[11]

    Table  2.   Quasi-static tensile mechanical parameters of the ultrafine grained D6A steels at room temperature[11]

    温度/℃应变率/s−1屈服强度/MPa 拉伸强度/MPa 工程伸长率/%
    工程真实 工程 真实
    251.7×10−11110 1120 1120 1250 25
    251.7×10−211001115 1115 1245 25
    251.7×10−31095 1110 1110 1240 25
    下载: 导出CSV

    表  3  室温下超细晶D6A钢的动态拉伸力学参数

    Table  3.   Dynamic tensile mechanical parameters of the ultrafine grained D6A steel at room temperature

    温度/℃应变率/s−1强度/MPa伸长率/%
    25560196012.72
    25580195013.42
    25620198013.48
    25910221012.43
    25920198013.53
    251030 224012.37
    下载: 导出CSV
  • [1] JIA D, RAMESH K T, MA E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron [J]. Acta Materialia, 2003, 51(12): 3495–3509. DOI: 10.1016/s1359-6454(03)00169-1.
    [2] OKITSU Y, TAKATA N, TSUJI N. Mechanical properties of ultrafine grained ferritic steel sheets fabricated by rolling and annealing of duplex microstructure [J]. Journal of Materials Science, 2008, 43(23/24): 7391–7396. DOI: 10.1007/s10853-008-2971-9.
    [3] OKITSU Y, TAKATA N, TSUJI N. Dynamic deformation behavior of ultrafine-grained iron produced by ultrahigh strain deformation and annealing [J]. Scripta Materialia, 2011, 64(9): 896–899. DOI: 10.1016/j.scriptamat.2011.01.026.
    [4] HU Y S, YU Z Y, FAN G L, et al. Simultaneous enhancement of strength and ductility with nano dispersoids in nano and ultrafine grain metals: a brief review [J]. Reviews on Advanced Materials Science, 2020, 59(1): 352–360. DOI: 10.1515/rams-2020-0028.
    [5] 王鹏杰, 申勇峰, 冯晓伟, 等. 轧制-退火工艺制备超细晶D6A钢的微观组织与织构 [J]. 钢铁研究学报, 2016, 28(9): 54–59. DOI: 10.13228/j.boyuan.issn1001-0963.20160042.

    WANG P J, SHEN Y F, FENG X W, et al. Microstructures and textures of ultrafine grained D6A steel by using rolling and annealing [J]. Journal of Iron and Steel Research, 2016, 28(9): 54–59. DOI: 10.13228/j.boyuan.issn1001-0963.20160042.
    [6] JIA N, SHEN Y F, LIANG J W, et al. Nanoscale spheroidized cementite induced ultrahigh strength-ductility combination in innovatively processed ultrafine-grained low alloy medium-carbon steel [J]. Scientific Reports, 2017, 7(1): 2679. DOI: 10.1038/s41598-017-02920-9.
    [7] LIANG J W, SHEN Y F, ZHANG C S, et al. In situ neutron diffraction in quantifying deformation behaviors of nano-sized carbide strengthened UFG ferritic steel [J]. Materials Science and Engineering: A, 2018, 726: 298–308. DOI: 10.1016/j.msea.2018.04.094.
    [8] WEI Q, SCHUSTER B E, MATHAUDHU S N, et al. Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures [J]. Materials Science and Engineering: A, 2007, 493(1/2): 58–64. DOI: 10.1016/j.msea.2007.05.126.
    [9] 张世雄. 超细晶/纳米晶纯钛的制备及动态力学性能研究 [D]. 北京: 北京理工大学, 2016: 43–50.
    [10] 刘晓燕, 张琪, 杨西荣, 等. 超细晶工业纯钛的变形、应变速率敏感性和激活体积 [J]. 稀有金属材料与工程, 2020, 49(6): 1867–1872.

    LIU X Y, ZHANG Q, YANG X R, et al. Deformation, strain rate sensitivity and activation volume of ultrafine-grained commercially pure Ti [J]. Rare Metal Materials and Engineering, 2020, 49(6): 1867–1872.
    [11] LIANG J W, SHEN Y F, MISRA R D K, et al. High strength-superplasticity combination of ultrafine-grained ferritic steel: the significant role of nanoscale carbides [J]. Journal of Materials Science and Technology, 2021, 83: 131–144. DOI: 10.1016/j.jmst.2020.11.078.
    [12] TSUJI N, ITO Y, SAITO Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB andannealing [J]. Scripta Materialia, 2002, 47(12): 893–899. DOI: 10.1016/S1359-6462(02)00282-8.
    [13] ZAISER M. Scale invariance in plastic flow of crystalline solids [J]. Advances in Physics, 2006, 55(1/2): 185–245. DOI: 10.1080/00018730600583514.
    [14] ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
    [15] ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013.
    [16] MEYERS M A. Dynamic behavior of materials [M]. New Jersey: John Wiley and Sons, 1994: 345-349. DOI: 10.1002/9780470172278.
    [17] DE HOSSON J T M, ROOS A, HOSSON E D. Temperature rise due to fast-moving dislocations [J]. Philosophical Magazine A, 2001, 81(5): 1099–1120. DOI: 10.1080/01418610108214431.
    [18] QIN K, YANG L M, HU S S. Mechanism of strain rate effect based on dislocation theory [J]. Chinese Physics Letters, 2009, 26(3): 036103. DOI: 10.1088/0256-307X/26/3/036103.
    [19] GLADMAN T. Second phase particle distribution and secondary recrystallisation [J]. Scripta Metallurgica et Materialia, 1992, 27(11): 1569–1573. DOI: 10.1016/0956-716X(92)90146-6.
    [20] ZHOU B C, YANG T, ZHOU G, et al. Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning [J]. Acta Materialia, 2021, 205: 116561. DOI: 10.1016/J.ACTAMAT.2020.116561.
    [21] ZENER C, HOLLOMON J H. Plastic flow and rupture of metals [J]. Transactions of the America Society of Mechanical, 1944, 33: 163–235.
    [22] 徐永波, 白以龙. 动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展 [J]. 力学进展, 2007, 37(4): 496–516. DOI: 10.3321/j.issn:1000-0992.2007.04.002.

    XU Y B, BAI Y L. Shear localization, microstructure evolution and fracture under high-strain rate [J]. Advances in Mechanics, 2007, 37(4): 496–516. DOI: 10.3321/j.issn:1000-0992.2007.04.002.
    [23] SWADENER J G, MISRA A, HOAGLAND R G, et al. A mechanistic description of combined hardening and size effects [J]. Scripta Materialia, 2002, 47(5): 343–348. DOI: 10.1016/S1359-6462(02)00156-2.
    [24] GRAÇA S, COLAÇO R, VILAR R. Indentation size effect in nickel and cobalt laser clad coatings [J]. Surface and Coatings Technology, 2007, 202(3): 538–548. DOI: 10.1016/j.surfcoat.2007.06.031.
    [25] REZAEE M, ZAREI-HANZAKI A, MOHAMADIZADEH A, et al. High-temperature flow characterization and microstructural evolution of Ti6242 alloy: yield drop phenomenon [J]. Materials Science and Engineering: A, 2016, 673: 346–354. DOI: 10.1016/j.msea.2016.07.043.
    [26] BARMOUZ M, ABRINIA K, KHOSRAVI J. Using hardness measurement for dislocation densities determination in FSPed metal in order to evaluation of strain rate effect on the tensile behavior [J]. Materials Science and Engineering: A, 2013, 559: 917–919. DOI: 10.1016/j.msea.2012.08.086.
    [27] FAN J K, KOU H C, LAI M J, et al. High temperature discontinuous yielding in a new near β titanium alloy Ti-7333 [J]. Rare Metal Materials and Engineering, 2014, 43(4): 808–812. DOI: 10.1016/S1875-5372(14)60089-8.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  108
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-05-11
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回