• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

颅脑爆炸伤致伤机制及防护研究进展

柳占立 杜智博 张家瑞 严子铭 栗志杰 王鹏 康越 黄献聪 马天 费舟 庄茁

张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析[J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
引用本文: 柳占立, 杜智博, 张家瑞, 严子铭, 栗志杰, 王鹏, 康越, 黄献聪, 马天, 费舟, 庄茁. 颅脑爆炸伤致伤机制及防护研究进展[J]. 爆炸与冲击, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053
ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
Citation: LIU Zhanli, DU Zhibo, ZHANG Jiarui, YAN Ziming, LI Zhijie, WANG Peng, KANG Yue, HUANG Xiancong, MA Tian, FEI Zhou, ZHUANG Zhuo. Progress in the mechanism and protection of blast-induced traumatic brain injury[J]. Explosion And Shock Waves, 2022, 42(4): 041101. doi: 10.11883/bzycj-2021-0053

颅脑爆炸伤致伤机制及防护研究进展

doi: 10.11883/bzycj-2021-0053
详细信息
    作者简介:

    柳占立(1981- ),男,博士,副教授,liuzhanli@mail.tsinghua.edu.cn

    通讯作者:

    庄 茁(1952- ),男,博士,教授,博士生导师,zhuangz@tsinghua.edu.cn

  • 中图分类号: O389

Progress in the mechanism and protection of blast-induced traumatic brain injury

  • 摘要: 颅脑爆炸伤是现代战争中士兵面临的主要伤害之一,近年来受到广泛关注。冲击波经由颅脑传播带来的直接伤害被称为初级爆炸伤。目前,初级颅脑爆炸伤致伤机制尚不明确,可能是应力波传播、颅骨弯曲变形、颅脑空化及躯干压缩等多种因素共同作用的结果。该研究是涉及多学科交叉、多物理场耦合及短时和长时效应共存的复杂问题,需要通过建立描述冲击波和颅脑相互作用的高精度、多尺度和多物理场数值模型,发展测量颅骨应变、颅内压力、加速度等力学指标的物理测试系统,结合人体和动物病理、生理、行为学等综合因素分析,最终揭示颅脑爆炸伤致伤机制。本文中介绍了初级颅脑爆炸伤致伤机制,给出了颅脑爆炸伤的行为学、生理学相关的医学评价指标,以及颅骨应变、颅内压力等关键力学评估指标,提出了基于致伤机制和评价指标的防护结构设计方法,包括基于新型防冲击波材料的头盔系统改进、头盔缓冲系统设计、增加头部保护系统的封闭性等,最后展望了在精细化建模、原位实验及防护系统设计等诸多方面的发展趋势。
  • 当前,随着海洋战略地位的日益突出,水下枪炮研究逐渐成为热点。膛口流场现象的复杂性和极高的时空演变特性会对弹丸的飞行产生初始扰动,进而影响到射击精度。因此,中间弹道学的研究受到了广泛关注。不同于空气中发射,水下发射时弹丸及火药燃气受到的水阻力更大,膛口流场现象更复杂。因此,有必要对水下枪炮发射膛口流场发展过程进行深入研究。

    针对枪炮空气中发射时的膛口流场已经开展了大量的实验、理论分析和数值模拟研究。为了能够较清楚地认识膛口流场的结构,Steward等[1]、Moumen等[2]和郭则庆等[3]对枪炮膛口流场进行了不同的可视化实验研究。随着计算机和动网格技术的发展,含初始流场和运动弹丸的膛口流场以及弹丸在膛口流场中的受力情况开始受到关注。膛口初始流场对火药燃气流场的发展及弹丸运动有一定的影响,李子杰等[4]基于有限体积法,对有、无初始流场两种条件下的膛口流场进行了数值模拟,分析了初始流场对膛口流场的影响。陈川琳等[5]利用实验和数值模拟相结合的方法分析了弹头在膛口流场中的受力和运动规律。

    相较于空气中发射,枪炮水下发射时的情形更为复杂,因此学者们从不同的方面对枪炮水下发射过程进行了研究。水下发射时,燃气从炮口中喷出,在液体中高速扩展形成燃气射流。Harby等[6]、甘晓松等[7]和Xue等[8]对水下燃气射流进行了实验和数值模拟研究,分析了射流气液边界的不稳定性及燃气扩展过程中出现的颈缩、断裂等现象。水下炮密封式发射内弹道特性虽与常规内弹道有许多相似之处,但仍存在一定的差异[9],通过对水下炮内弹道的研究,可以更好地掌握弹丸水下运动规律。超空泡射弹入水后形成超空泡,利用超空泡的水中减阻特性,降低了弹丸衰减速度,实现水中高速航行。易文俊等[10]、施红辉等[11]、刘富强等[12]、黄海龙等[13]及Gao等[14]对水下超空泡射弹特性进行了数值模拟。针对水下膛口流场方面的研究,则主要体现在密封式发射和全淹没式发射方式。张欣尉等[15]、张京辉等[16]分别利用密封式发射和全淹没式发射方式对12.7 mm水下枪在不同水深条件下的膛口流场进行了数值模拟,发现水深与膛口流场特性存在一定的规律性。

    前人所研究的重点多为空气中膛口流场、水下燃气射流场及水下枪膛口流场特性,对于水下火炮发射膛口流场特性的研究尚未见报道。本文中,利用30 mm口径火炮研究水下炮密封式发射膛口流场特性及演变规律,通过对火炮在空气中和水下发射时的膛口流场特性进行对比分析,讨论不同介质对火炮膛口流场演化特性的影响规律。

    水下发射膛口流场是一个较复杂的流场,为了能够对其进行有效的数值模拟,根据火炮水下密封式发射的特点,对所研究模型进行如下假设:

    (1)火药颗粒膛内燃烧遵循几何燃烧定律,药粒具有均一的理化性质,形状和尺寸一致,且遵循燃烧速度定律。

    (2)弹丸沿x轴正向移动,不考虑重力的影响,将膛口燃气射流与水的相互作用近似看作二维轴对称非稳态过程问题进行处理。

    (3)膛口燃气射流视为可压缩理想气体,满足理想气体状态方程,且忽略膛口燃气多组分化学反应的影响;将水视为不可压缩相,密度取 998.2 kg/m3

    (4)因水下密封式发射时,身管内有少量气体,弹丸出膛后不会直接与水接触,且膛口流场作用时间短暂,因此不考虑膛口附近水的空化及相变。

    本文中,各模型方程式如下。

    (1)连续性方程为:

    (αqρq)t+(αqρqv)=0
    (1)

    式中:q=1,2分别表示气体相和液体相; ρq为对应气体相和液体相的密度;αq为对应气体相和液体相的体积分数,且α1+α2=1t为时间;v为速度矢量。

    (2)动量守恒方程为:

    t(ρv)+(ρvv)=p+[μ(v+vT)]
    (2)
    ρ=nq=1αqρq
    (3)

    式中: ρ为气液混合密度,且 ρ=α1ρ1+(1α1)ρ2p为流场中的流体压力;μ为黏度系数。

    (3)能量守恒方程为:

    t(ρE)+[v(ρE+p)]=(keT)
    (4)

    式中: E为平均能量,E=( α1ρ1E1+α2ρ2E2)/( α1ρ1+α2ρ2);T为平均温度,T= (α1ρ1T1+α2ρ2T2)/(α1ρ1+α2ρ2);ke为有效热传导率。

    (4)理想气体状态方程为:

    p=ρRT
    (5)

    式中:R为火药燃气常数。

    (5)湍流方程:

    采用的湍流模型为标准k-ε模型,该模型的优点是可以忽略分子黏性的影响,具有较高的稳定性、经济性和计算精度:

    t(ρκ)+xi(ρκui)=xj[(μ+μtσκ)κxj]ρ¯uiujujxiρε
    (6)
    t(ρε)+xi(ρεui)=xj[(μ+μtσε)εxj]Cε2ρε2κ+Cε1εκρ¯uiujujxi
    (7)
    μt=Cμκ2/ε
    (8)

    式中:κ为湍流脉动动能;ε为湍流耗散率;ij为自由指标,uiuj为速度矢量;¯uiuj为雷诺应力;常数σκ=1.0和σε=1.3分别为湍流脉动动能和湍流耗散率对应的普朗特数;μt为湍流黏性系数;经验系数Cε1=1.44,Cε2 =1.92,Cμ=0.08。

    本文中,数值模拟计算需要耦合以下内弹道方程组[15]

    (1)火药形状函数为:

    ψ=χZ(1+λZ+μcZ2)
    (9)

    式中:ψ为药室内已燃火药的百分数, χλ μc分别为火药形状特征量,Z为已燃相对厚度。

    (2)火药燃速方程为:

    dZdt=u1pnae
    (10)

    式中:u1为燃速常数; n为燃速指数,由实验确定;e为药粒半厚度;pa为膛内燃气平均压力。

    (3)弹丸运动方程为:

    A0(pbph)dA=φmdvpdt
    (11)

    式中:pbph分别为弹丸底部压力和弹丸头部压力,A为弹丸的横截面积,m为弹丸的质量,φ为次要功系数,vp为弹丸速度。

    (4)内弹道基本方程组为:

    Ap(lψ+l)θ=fωψθφ2mv2px0A0phdAdl
    (12)
    lψ=l0[1Δρp(1ψ)αΔψ]
    (13)

    式中:l0为药室容积缩径长;lψ为药室自由容积缩径长;Δ为火药装填密度;ω为火药装药质量;α为火药气体的余容; ρp为火药密度;l为弹丸运动距离;比热比θ=k1k为绝热指数;f为火药力。

    (5)弹丸速度与行程关系式为:

    dldt=vp
    (14)

    将式(9)~(14)构成的内弹道方程组编写用户自定义函数(UDF)和FLUENT程序进行耦合计算。

    数值模拟基于压力的隐式算法求解,多相流采用VOF模型,利用PRESTO!插值格式进行压力项离散,利用压力隐式算子分裂(PISO)算法求解压力-密度的耦合,动量和能量的离散均采用一阶迎风格式,为了保证计算的稳定性,计算过程中时间步长控制在0.1 μs以内。

    对膛口流场进行数值模拟时,很难生成单块高质量网格,因此采用网格分区划分进行处理。将整个计算域划分为3个区,即药室Ⅰ区、身管Ⅱ区和膛口流场Ⅲ区。炮膛身管内径为30 mm,弹丸内弹道行程为1.9 m,膛口流场计算域为长1.3 m、半径0.35 m的圆柱形区域。为了更好地捕捉膛口流场波系结构,对膛口流场区采用渐变网格的方式进行了局部加密,膛口附近计算域的网格比较密集,最小网格尺寸为0.5 mm×0.5 mm,流场边界域的网格比较稀疏;在弹头附近采用三角形网格以更好地捕捉其形状,药室区和身管区采用均匀大小的结构网格,计算网格总数为240 000。图1(a)为计算模型示意图,图1(b)为计算网格示意图。

    图  1  计算模型
    Figure  1.  Calculation model

    设定药室为压力入口边界条件,身管、膛口为固壁边界条件,弹丸设定为刚体运动,从膛底开始按内弹道方程组计算弹丸运动速度;膛口流场区域外边界为压力出口边界。初始时刻,药室和身管充满气体,膛口外部区域中充满液体介质水,计算初值与环境参数相同,即初始压力为101 325 Pa,初始温度为300 K。

    网格无关性验证的目的是验证网格密度变化对计算结果的影响,即通过不断改变网格疏密来观察计算结果的变化,当其波动幅度在允许范围内时,就可以认为计算值与网格无关。

    为了保证数值模拟的效率与结果的精确性,对计算网格模型膛口周围流场区域进行了不同尺寸的网格加密,得到了3组不同密度的计算网格数,分别为200 000、240 000及270 000。以膛口到弹底轴向燃气压力分布为参考值,如图2所示,与采用240 000网格数计算时膛口到弹底轴向燃气压力分布相比,采用200 000和270 000网格数进行计算时的平均误差分别为12.5%和4.2%,其波动幅度在允许范围内,因此本文中采用240 000网格数进行数值模拟。

    图  2  膛口到弹底压力沿轴向变化曲线
    Figure  2.  Variation of axial pressure from the muzzleto the projectile bottom

    为了研究水下发射膛口流场演变特性并验证数值模型的有效性,通过搭建可视化水下发射实验测试系统,对弹道枪水下密封式发射进行了可视化实验,图3(a)为实验系统。密封式发射时,为了保证身管中充满空气,使用密封膜片将膛口密封,当膛内燃气达到一定压力时膜片打开。实验采用高速摄像机观察和记录多相流场的演化过程,得到了不同时刻的实验阴影图。通过采用与实验相同(弹体质量为45 g、水深0.5 m)的条件工况进行数值模拟,得到相应时刻的模拟相图与实验阴影图对比,如图3(b)所示。图3(b)中上半部分为实验阴影图,下半部分为采用本文中数值模拟方法得到的相图。由图3(b)可知,数值模拟相图中燃气的物质边界扩展尺度和位置与实验阴影图吻合较好。为了进一步说明数值模型的有效性,图4给出了不同时刻射流头部的最大轴向位移对比,由图4可知,数值模拟结果与实验测量结果吻合较好,最大偏差为4.2%。由此可知,利用本文中的数值模型和计算方法进行水下发射膛口流场模拟是可行的。

    图  3  实验系统(a)和数值模拟得到相应时刻的模拟相图与实验阴影图对比(b)
    Figure  3.  Experimental system (a) and the comparison of experimental shadow diagram and simulation results (b)
    图  4  射流头部轴向最大位移对比
    Figure  4.  Comparison of maximum axial displacement of jet head

    对30 mm火炮在水下密封式发射时的膛口流场分布进行数值模拟,密封片破膛压力取0.2 MPa,并与在空气中发射时的膛口流场进行比较,将弹丸出膛口瞬间看作t=0时刻。表1为两种发射环境下的部分内弹道及膛口参数,通过内弹道方程组(式(9)~(14))求解所得,表1x为身管长度,pm为膛内最大压力,v0为弹丸出膛口时的速度(弹丸初速),p0为燃气在膛口处的压力,T0为燃气在膛口处的温度。图5给出了两种发射环境下的燃气射流膛口压力在不同时刻的变化曲线。由表1中可以看出,由于两种发射环境下的膛内阻力基本相同,水下密封式发射时膛内最大压力较空气中发射只升高了7 MPa,而弹丸初速却比空气中发射降低了32 m/s,这是由于密封片使膛口处压力升高和弹丸出膛口时受到水的阻力共同使得弹丸初速降低,此时弹前燃气在炮口处聚集,导致膛口压力和温度显著升高,分别升高了54.8%和10.6%。由图5可知,弹丸出膛口后,两种发射环境下的燃气射流膛口压力均随时间呈衰减趋势,在50 μs内压力衰减迅速,然而由于水对燃气扩展的阻碍较大,气体在水中的膨胀速度比在空气中慢,燃气聚集使得炮口气体压力始终较高。

    表  1  内弹道及膛口参数
    Table  1.  Interior ballistics and muzzle parameters
    发射环境x/mv0/(m·s−1pm/MPap0/MPaT0/K
    空气中 1.94 985 317 62 2 152
    水下 1.94 953 324 96 2 380
    下载: 导出CSV 
    | 显示表格
    图  5  膛口燃气压力变化曲线
    Figure  5.  Variation of muzzle gas pressure

    为了研究膛口压力场的演变特性,图6图7分别给出了两种环境下不同时刻的压力分布和纹影图,上半部为压力云图,下半部为纹影图。图8给出了200 μs时刻燃气压力沿轴向的分布曲线。弹丸出膛口后,高温高压的火药燃气迅速喷出扩展,当射流滞止压力与环境压力之比大于3~4时, 流场结构中会出现瓶状正激波结构, 称为马赫盘。由图6可知,当弹丸运动30 μs时,燃气还未追上弹丸,炮口处燃气呈球状扩展。当弹丸运动70 μs时,火药燃气轴向迅速膨胀且已经包围弹丸;弹丸运动240 μs时,弹丸追赶初始冲击波,初始冲击波是弹前激波在膛口外绕射形成的球形冲击波,火药燃气扩展受冲击波影响压力升高;随着弹丸运动350 μs,弹丸已完全摆脱火药燃气的包围,形成完整的膛口流场。由图7可以发现,水下发射膛口压力场与空气中有所不同。弹丸运动30 μs时,火药燃气主要向弹丸侧前方(径向)膨胀且激波核心区较小,这是由于燃气同时受到弹丸和水的阻力,扩展不够充分。随着弹丸在水下不断运动,燃气逐渐由径向转为轴向膨胀,膛口处的燃气压力衰减比空气中更迅速。在水下运动过程中,由于高密度的水,弹丸头部产生的压力远高于膛口核心区的燃气压力,在空气运动过程中,受初始燃气流场的影响,被压缩的低密度空气在弹丸头部产生的压力极低,尽管弹丸被燃气包围后弹前压力有所升高,但仍远低于膛口核心区的燃气压力,从纹影图中可以更加清晰地看出两种介质中的流场波系结构。结合图8可以看出,在200 μs时,水下发射时燃气压力先沿轴向快速下降,穿越马赫盘后有较大幅度的上升,然后波动变化。由于此时空气中发射时马赫盘尚未形成,燃气压力迅速下降,之后基本保持不变。可见,介质密度的巨大差异导致膛口压力场的时空分布存在显著差别。

    图  6  空气中膛口压力分布及纹影图
    Figure  6.  Pressure distribution and schlieren diagram at muzzle in air
    图  7  水下膛口压力分布及纹影图
    Figure  7.  Pressure distribution and schlieren diagram at muzzle under water
    图  8  200 μs时轴向压力分布曲线
    Figure  8.  Axial pressure distribution curves at 200 μs

    为进一步了解水下发射膛口燃气压力变化,图9给出了水下不同时刻膛口的轴向压力分布曲线,由图9可知,70 μs时,由于燃气速度大于弹丸速度而形成的弹底激波所致,燃气压力会有突跃,此时马赫盘尚未形成;140 μs时,马赫盘开始形成,燃气压力上升幅度最大;随着弹丸不断运动,燃气压力波动逐渐减小,趋于平缓。由此可见,膛口激波结构是一个生长-衰减-稳定的过程。

    图  9  水下不同时刻轴向压力分布曲线
    Figure  9.  Distribution curves of underwater axial pressureat different moments

    弹丸出膛口时,膛内燃气压力远高于外部环境压力,属于高度欠膨胀射流。为了更直观地了解膛口燃气高度欠膨胀射流的结构特征,图10给出了空气中发射和水下密封式发射时膛口燃气射流结构流谱图[17],并给出了气液边界线。其中A区为核心激波自由膨胀区,火药燃气主要在该区域内膨胀,压力剧降,速度激增,该区域为超音速气流,Ma>1。B区为相交激波与反射边界之间的超音速区域。大部分燃气在扩展过程中穿过马赫盘进入亚声速区C,该区域燃气经过马赫盘后聚集,压力陡增,速度降为亚声速,Ma<1。有少部分的燃气经过两次斜激波后(入射激波和反射激波)进入D区,D区的燃气压力虽与C区相同,但由于经过两次不同的压缩过程使得速度增高,为超音速气流。由图10可以看出,空气中发射时膛口马赫盘完全形成后呈圆弧状结构,而水下发射时马赫盘结构呈梯形状。由于火炮在水下发射时,燃气在扩展过程中受到高密度水(约为空气密度的800倍)的挤压,射流前端高压区的存在使气体产生回流现象,该回流对射流主通道具有剪切作用,挤压与回流导致气流在垂直于炮口轴线方向上产生不稳定性,使得燃气射流扩展过程中出现颈缩现象,激波核心区受颈缩作用,马赫盘形状结构呈梯形状,导致空气中发射和水中发射时的马赫盘结构不同。

    图  10  两种环境下膛口流场流谱
    Figure  10.  Flow spectrum of muzzle flow field in two environments

    为了更好地了解马赫盘的形成过程及特性,图1112分别给出了水下发射和空气中发射时不同时刻的马赫数分布和纹影图,其中上半部为马赫数云图,下半部为纹影图。图13给出了70与200 μs时刻马赫数沿轴线的分布曲线。由图11可以看出,70 μs时,由于受到弹丸和水的阻力作用,燃气主要为径向膨胀,炮口两侧马赫数较高。随着燃气的喷射和膨胀,气体射流形成主轴激波结构,直到140 μs时马赫盘初步生成。随着弹丸不断运动,燃气射流充分发展,激波面积增大,马赫盘向垂直轴线方向变化,直径逐渐增大,在240 μs时,入射激波、反射激波及马赫盘在接触面交汇于一点,形成三波点结构。由图12可知,70 μs时,火药燃气流场逐步吞没初始流场,在炮口后形成球状激波结构;随着弹丸运动和燃气不断喷出,在320 μs时马赫盘开始初步生成,三波点结构也已形成。当弹丸运动到480 μs,激波结构完全生成,马赫盘呈碗状结构。由图13(a)可知,两种环境发射时马赫数均先沿轴线增大后减小,由图13(b)可知,200 μs、水下发射时,马赫数沿轴线增大后呈断崖式衰减,结合图10的膛口流场流谱图可知,燃气在穿越马赫盘后进入亚声速区,速度骤降,与水下发射不同,空气中发射时的马赫盘还未形成。

    图  11  水下发射时膛口马赫数分布及纹影图
    Figure  11.  Mach number distribution and schlieren diagram at muzzle under water
    图  12  空气中发射时膛口马赫数及纹影图
    Figure  12.  Mach number distribution and schlieren diagram at muzzle in air
    图  13  马赫数轴向分布曲线
    Figure  13.  Axial distribution of Mach number

    对比可知:水下发射时膛口附近会有气液夹带,而空气中发射时低密度的空气对射流尾翼没有大的影响;水下发射时火药燃气射流受气液界面的相互作用影响,更快形成马赫盘结构,而在空气中,火药燃气膨胀过程中受阻较小,燃气射流较长时间与弹底作用形成弹底激波,阻碍马赫盘的形成;水下发射时的激波核心区面积明显小于空气中发射时的激波核心区面积,且弹丸头部不存在冠状冲击波。

    两种环境下的马赫盘轴向位移随时间变化曲线如图14所示,为了直观地看出马赫盘距离膛口位置随时间变化的规律,经过计算得出,马赫盘距离膛口位置随时间变化呈指数增长,拟合公式为:

    图  14  两种环境下的马赫盘轴向位移随时间变化曲线
    Figure  14.  Mach disc’s axial displacement with time in two environments
    x(t)=x0+x1et/t1
    (15)

    式中:x(t)为马赫盘距膛口位移(mm),膛口为坐标原点;x0为初始系数, x0=113mmx1为增速系数,x1=80mmt1为时间增长因子,t1=180

    而空气中发射时马赫盘距离膛口位置随时间的变化呈线性增长,拟合公式为:

    x(t)=x0+x1t
    (16)

    式中:x(t)为马赫盘距膛口位移(mm);膛口为坐标原点;x0=152.2mmx1为线性增长因子,x1=0.35m/s

    为了进一步研究不同介质中的弹丸速度衰减规律,图15给出了两种介质中弹丸速度随时间变化的曲线,弹头出膛口记为零时刻,从图15中可以看出,水下发射时,当弹头与水接触后,弹丸速度开始迅速衰减,直到弹丸全部出膛后一直呈线性衰减,而在空气中发射时,弹丸刚飞出膛口后,弹丸在火药燃气作用下先加速运动,当弹丸摆脱燃气流作用后,在空气阻力作用下,弹丸速度又开始缓慢衰减。

    图  15  不同介质中弹丸速度随时间变化曲线
    Figure  15.  Variation of projectile velocitywith time in different media

    利用30 mm火炮建立了水下密封式发射数值模型,模拟了火炮水下发射时的膛口流场演变过程,通过对火炮在空气中和水下发射时的膛口流场特性进行对比分析,发现两种不同介质环境下的膛口流场特性存在较大的不同。

    (1)水下密封式发射时,弹丸在膛内所受的阻力与空气中发射时基本相同,水下发射时的膛内最大压力只比空气中发射时高7 MPa,弹丸出膛口时受到水的阻力较大,弹丸初速比空气中发射时降低了32 m/s,弹丸初速的降低使得膛口压力和温度比空气中发射时分别升高54.8%和10.6%。

    (2)弹丸出膛口后,两种发射环境下的燃气射流膛口压力均随时间呈衰减趋势,水下发射时燃气膨胀受水的阻碍,燃气压力始终高于空气中发射;弹丸入水后,弹丸头部产生的压力远高于膛口核心区的燃气压力,而弹丸在空气中飞行时,弹丸头部产生的压力却远低于膛口核心区的燃气压力。

    (3)水下密封式发射时,膛口附近会有气液夹带,而空气中发射时,低密度的空气对射流尾翼没有较大的影响;火药燃气射流受气液界面的相互作用影响,在140 μs时初步形成马赫盘结构,而空气中发射时马赫盘结构形成较晚,约在320 μs时形成;水下发射时的激波核心区面积明显小于空气中发射时的激波核心区面积。水下密封式发射时,马赫盘距离膛口轴向位移随时间变化呈指数增长;而空气中发射时,马赫盘距离膛口位置随时间变化呈线性增长。

    本文中在计算和分析时暂未考虑弹体高速运动在水中的冲击波效应及空穴效应,在后续的工作中将会进一步研究冲击波效应及空穴效应对膛口流场演化过程的影响规律。

  • 1(a)  爆炸冲击波引起颅脑损伤[9]

    1(a).  Traumatic brain injury caused by blast wave[9]

    图  1(b)  爆炸冲击波载荷特点

    Figure  1(b).  Characteristics of blast loading

    图  2  颅骨弯曲变形过程[31]

    Figure  2.  Flexural deformation process of the skull[31]

    图  3  颅骨振动有限元模拟[35]

    Figure  3.  Finite element simulation of the flexural deformation of the skull[35]

    图  4  冲击波正面作用时颅脑压力云图与颅骨变形云图[37]

    Figure  4.  Nephograms of the brain pressure and skull displacement caused by the frontal impact of the blast wave[37]

    图  5  大脑椭球体模型的二维示意图[43]

    Figure  5.  Two dimensional diagrams of the brain ellipsoid model[43]

    图  6  直径457 mm的激波管示意图[44]

    Figure  6.  The shock tube of 457 mm in diameter[44]

    图  7  研究bTBI的多尺度数值模型[51]

    Figure  7.  Multi-scale numerical model for bTBI study[51]

    图  8  损伤分类

    Figure  8.  Damage classification

    图  9  人体头部及肺部冲击波超压耐受曲线[60]

    Figure  9.  Shock wave overpressure tolerance curves of the human head and lungs[60]

    图  10  高仿真头颈部模型主要传感器的布置(清华大学)[62]

    Figure  10.  Sensor layout on the high-fidelity head and neck model (Tsinghua University)[62]

    图  11  高仿真头颈部模型与激波管实验平台[62]

    Figure  11.  High-fidelity head and neck model and shock tube experimental platform[62]

    图  12  实爆实验布置情况[63]

    Figure  12.  Layout of the explosion experiment[63]

    图  13  头部压力监测位置[63]

    Figure  13.  Head pressure monitoring positions[63]

    图  14  爆炸性颅脑损伤(bTBI)模型的细节[65]

    Figure  14.  Details of the model of explosive brain injury (bTBI)[65]

    图  15  爆破实验装置[66]

    Figure  15.  Blasting experimental device[66]

    图  16  大鼠头部暴露的位置[67]

    Figure  16.  Location of rat head exposed [67]

    图  17  不同头盔的防护效能[78]

    Figure  17.  Protection effectiveness of different helmets[78]

    图  18  头部矢状面和冠状面以及头盔构形[80]

    Figure  18.  The vertical plane and coronal plane of the head, as well as the helmet configuration[80]

    图  19  泡沫材料对矢状面和冠状面模型的影响[80]

    Figure  19.  Influences of the foam material on the sagittal model and coronal plane model[80]

    图  20  不同厚度泡沫垫的应力时程曲线[81]

    Figure  20.  The time history of stress in the foam pads of different thicknesses[81]

    图  21  不同性能泡沫垫中应力的时间历程[81]

    Figure  21.  The time histories of stress in the foam pads with different properties[81]

    图  22  排爆头盔模型[82]

    Figure  22.  Explosive ordnance disposal helmet model[82]

    图  23  全系统头部防护(头盔+眼部防护装置+下颚部防护装置)[53]

    Figure  23.  Full system head protection (helmet + visor + mandibular shield)[53]

    图  24  不同头部防护组合的效果对比[53]

    Figure  24.  Comparison of the effects of different head protection combinations[53]

    图  25  装备多层防护面罩头盔的仿真模型[83]

    Figure  25.  Simulation model of helmet equipped with a multi-layer face shield[83]

    图  26  面部结构防护效果对比[83]

    Figure  26.  Comparison of the facial protective effects[83]

    表  1  格拉斯哥昏迷评分

    Table  1.   Glasgow coma scale (GCS)

    评分眼睛状况口头表达动态行为
    无法监测例如:严重的眼外伤例如:插管例如:瘫痪
    1不睁眼不能言语刺痛下肢体不动
    2刺痛睁眼只能发音刺痛下有肢体伸直
    3呼唤睁眼回答含糊不清刺痛下有肢体屈曲
    4自动睁眼回答有错误刺痛下有躲避反应
    5回答正确能定位刺痛位置
    6按吩咐动作
    下载: 导出CSV

    表  2  致伤阈值相关性[54]

    Table  2.   Correlation of the injury threshold[54]

    致伤阈值计算受伤区域与行为学损伤区域匹配相关度
    标准压力/PaMises应力/Pa等效应变体积能量率/(J·s−1剪切能量率/(J·s−1轴突拉伸轴突拉伸能量率/(J·s−1
    灰质5639565672
    白质44334422443356
    下载: 导出CSV

    表  3  bTBI常见医学指标[71]

    Table  3.   Common medical indexes of bTBI[71]

    事件机制血清生物标志物
    轻度创伤性脑损伤中度创伤性脑损伤严重创伤性脑损伤
    神经元和神经胶质细胞死亡激活触发坏死和/
    或凋亡的因子
    神经元:NSE,Ctau,SBP,
    所有血影蛋白
    神经元:NSE, PNF-H, NF-H,
    NMDAR, Hsp70, UCH-L1, C-tau,
    所有血影蛋白, SBP,促泌素
    神经元:NSE, PNF-H, NF-H,NMDAR, Hsp70, UCH-L1, C-tau,
    所有血影蛋白, SBP, 促泌素
    神经胶质:S100β,
    GFAP,MBP,C-tau
    神经胶质: S100β, GFAP,MBP,
    NMDAR, Hsp70, IL-1β, L-6, L-8,
    TN-α,C-tau, AQP4
    神经胶质: S100β, GFAP, MBP, NMDAR, Hsp70, IL-1β, IL-6,
    IL-8, TN-α, C-tau, AQP4
    血管
    痉挛
    血管收缩和松弛的失调Hsp70, TNF-α, VEGF,
    Claudin-5, vWF
    Hsp70, TNF-α, VEGF,
    Claudin-5, vWF
    水肿毒性和炎症因子引起的血管生成和细胞毒性事件Hsp70, IL-1β, IL-6, IL-8, VEGF, Claudin-5, vWF, AQP4, MMP9Hsp70, IL-1β, IL-6, IL-8, VEGF, Claudin-5, vWF, AQP4, MMP9
    轴突
    损伤
    机械损伤;神经元变性S100β, NSE, C-tau, MBP,
    SBP, 所有血影蛋白
    S100β, MBP, NSE, PNF-H, NMDAR, Hsp70, C-tau,
    所有血影蛋白, SBP
    S100β, MBP, NSE, PNF-H, NMDAR, Hsp70, C-tau,
    所有血影蛋白, SBP
    炎症细胞因子释放与细胞应激IL-1β, IL-6, IL-8,
    TNF-α, IFN -γ
    Hsp70, IL-1β, IL-6,
    IL-8, TNF-α, IFN -γ
    Hsp70, IL-1β, IL-6, IL-8,
    TNF-α, IFN -γ
    代谢
    变化
    缺氧;能量需求改变、
    离子稳态与神经传递;
    增加了修复过程
    血浆铜蓝蛋白,HIF-1α血浆铜蓝蛋白,HIF-1α
    下载: 导出CSV
  • [1] MAAS A I R, MENON D K, ADELSON P D, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research [J]. The Lancet Neurology, 2017, 16(12): 987–1048. DOI: 10.1016/S1474-4422(17)30371-X.
    [2] PHIPPS H, MONDELLO S, WILSON A, et al. Characteristics and impact of U. S. military blast-related mild traumatic brain injury: a systematic review [J]. Frontiers in Neurology, 2020, 11: 559318. DOI: 10.3389/fneur.2020.559318.
    [3] TANIELIAN T, HAYCOX L H, SCHELL T L, et al. Invisible wounds of war. summary and recommendations for addressing psychological and cognitive injuries: ADA480992 [R/OL]. Santa Monica: Rand Corp, 2008. [2021-02-03]. https://apps.dtic.mil/sti/citations/ADA480992.
    [4] 马奔, 李文静. 天津港“8·12”事故应急合作网络与协同应对 [J]. 国家行政学院学报, 2017(4): 91–96. DOI: 10.3969/j.issn.1008-9314.2017.04.015.
    [5] 康清清, 顾勤平, 周昱辰, 等. 江苏响水“3·21”特大爆炸事故的地震学鉴别和当量估计 [C] // 2019年中国地球科学联合学术年会论文集(二十). 北京: 中国和平音像电子出版社, 2019.
    [6] 谢忠设. 危化品车辆运输, 该怎么疏通最后一公里? [J]. 中国石油和化工, 2020(9): 60–63. DOI: 10.3969/j.issn.1008-1852.2020.09.018.
    [7] 徐唯, 宋瑛, 梁爱民, 等. 特大爆炸事故幸存者创伤后应激障碍的初步研究 [J]. 中国心理卫生杂志, 2003, 17(9): 603–606. DOI: 10.3321/j.issn:1000-6729.2003.09.008.
    [8] MOORE D F, RADOVITZKY R A, SHUPENKO L, et al. Blast physics and central nervous system injury [J]. Future Neurology, 2008, 3(3): 243–250. DOI: 10.2217/14796708.3.3.243.
    [9] MILLER T C, ZWERDLING D. Brain injuries remain undiagnosed in thousands of soldiers [DB/OL]. (2010-06-07)[2021-02-03]. https://www.propublica.org/article/brain-injuries-remain-undiagnosed-in-thousands-of-soldiers.
    [10] KOBEISSY F H. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects [M]. Boca Raton: CRC Press, 2015.
    [11] TEASDALE G, JENNETT B. Assessment and prognosis of coma after head injury [J]. Acta Neurochirurgica, 1976, 34(1): 45–55. DOI: 10.1007/BF01405862.
    [12] DAL CENGIO LEONARDI A, BIR C A, RITZEL D V, et al. Intracranial pressure increases during exposure to a shock wave [J]. Journal of Neurotrauma, 2011, 28(1): 85–94. DOI: 10.1089/neu.2010.1324.
    [13] DAL CENGIO LEONARDI A, KEANE N J, BIR C A, et al. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat [J]. Journal of Biomechanics, 2012, 45(15): 2595–2602. DOI: 10.1016/j.jbiomech.2012.08.024.
    [14] DAL CENGIO LEONARDI A, KEANE N J, HAY K, et al. Methodology and evaluation of intracranial pressure response in rats exposed to complex shock waves [J]. Annals of Biomedical Engineering, 2013, 41(12): 2488–2500. DOI: 10.1007/s10439-013-0850-2.
    [15] BAUMAN R A, LING G, TONG L, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast [J]. Journal of Neurotrauma, 2009, 26(6): 841–860. DOI: 10.1089/neu.2008.0898.
    [16] BOLANDER R, MATHIE B, BIR C, et al. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave [J]. Annals of Biomedical Engineering, 2011, 39(10): 2550. DOI: 10.1007/s10439-011-0343-0.
    [17] MUGGIA-SULLAM M. Blast injury [M]//GULLO A. Anaesthesia, Pain, Intensive Care and Emergency Medicine. Milano: Springer, 2002: 363−368. DOI: 10.1007/978-88-470-2099-3_34.
    [18] CHOI C H. Mechanisms and treatment of blast induced hearing loss [J]. Korean Journal of Audiology, 2012, 16(3): 103–107. DOI: 10.7874/kja.2012.16.3.103.
    [19] SHUPAK A, DOWECK I, NACHTIGAL D, et al. Vestibular and audiometric consequences of blast injury to the ear [J]. Archives of Otolaryngology–Head & Neck Surgery, 1993, 119(12): 1362–1367. DOI: 10.1001/archotol.1993.01880240100013.
    [20] DE RÉGLOIX S B, CRAMBERT A, MAURIN O, et al. Blast injury of the ear by massive explosion: a review of 41 cases [J]. Journal of the Royal Army Medical Corps, 2017, 163(5): 333–338. DOI: 10.1136/jramc-2016-000733.
    [21] QURESHI T A, AWAN M S, HASSAN N H, et al. Effects of bomb blast injury on the ears: the Aga Khan University Hospital experience [J]. The Journal of the Pakistan Medical Association, 2017, 67(9): 1313–1317.
    [22] AKULA P, HUA Y, GU L X. Blast-induced mild traumatic brain injury through ear canal: a finite element study [J]. Biomedical Engineering Letters, 2015, 5(4): 281–288. DOI: 10.1007/s13534-015-0204-0.
    [23] SHUKER S T. Maxillofacial air-containing cavities, blast implosion injuries, and management [J]. Journal of Oral and Maxillofacial Surgery, 2010, 68(1): 93–100. DOI: 10.1016/j.joms.2009.07.077.
    [24] HAXEL B R, GRANT L, MACKAY-SIM A. Olfactory dysfunction after head injury [J]. Journal of Head Trauma Rehabilitation, 2008, 23(6): 407–413. DOI: 10.1097/01.htr.0000341437.59627.ec.
    [25] XYDAKIS M S, MULLIGAN L P, SMITH A B, et al. Olfactory impairment and traumatic brain injury in blast-injured combat troops: a cohort study [J]. Neurology, 2015, 84(15): 1559–1567. DOI: 10.1212/WNL.0000000000001475.
    [26] AKULA P K, HUA Y, GU L X. Role of frontal sinus on primary blast-induced traumatic brain injury [J]. Journal of Medical Devices, 2013, 7(3): 030925. DOI: 10.1115/1.4024492.
    [27] DEMAR J, SHARROW K, HILL M, et al. Effects of primary blast overpressure on retina and optic tract in rats [J]. Frontiers in Neurology, 2016, 7: 59. DOI: 10.3389/fneur.2016.00059.
    [28] KOLIATSOS V E, CERNAK I, XU L Y, et al. A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization [J]. Journal of Neuropathology & Experimental Neurology, 2011, 70(5): 399–416. DOI: 10.1097/NEN.0b013e3182189f06.
    [29] WANG H C H, CHOI J H, GREENE W A, et al. Pathophysiology of blast-induced ocular trauma with apoptosis in the retina and optic nerve [J]. Military Medicine, 2014, 179(S8): 34–40. DOI: 10.7205/MILMED-D-13-00504.
    [30] CHOI J H, GREENE W A, JOHNSON A J, et al. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure [J]. Clinical & Experimental Ophthalmology, 2015, 43(3): 239–246. DOI: 10.1111/ceo.12407.
    [31] FIEVISOHN E, BAILEY Z, GUETTLER A, et al. Primary blast brain injury mechanisms: current knowledge, limitations, and future directions [J]. Journal of Biomechanical Engineering, 2018, 140(2): 020806. DOI: 10.1115/1.4038710.
    [32] ZHU F, CHOU C C, YANG K H, et al. A theoretical analysis of stress wave propagation in the head under primary blast loading [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228(5): 439–445. DOI: 10.1177/0954411914530882.
    [33] NYEIN M K, JASON A M, YU L, et al. Reply to Moss et al: military and medically relevant models of blast-induced traumatic brain injury vs. ellipsoidal heads and helmets [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): E83. DOI: 10.1073/pnas.1102626108.
    [34] ROMBA J J, MARTIN P. The propagation of air shock waves on a biophysical model: TM-17-61 [R]. Aberdeen: Human Engineering Lab Aberdeen Proving Ground, 1961.
    [35] MOSS W C, KING M J, BLACKMAN E G. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design [J]. Physical Review Letters, 2009, 103(10): 108702. DOI: 10.1103/PhysRevLett.103.108702.
    [36] BOLANDER H G, PERSSON L, HILLERED L, et al. Regional cerebral blood flow and histopathologic changes after middle cerebral artery occlusion in rats [J]. Stroke, 1989, 20(7): 930–937. DOI: 10.1161/01.STR.20.7.930.
    [37] LI Z J, DU Z B, YOU X C, et al. Numerical study on dynamic mechanism of brain volume and shear deformation under blast loading [J]. Acta Mechanica Sinica, 2019, 35(5): 1104–1119. DOI: 10.1007/s10409-019-00875-w.
    [38] OEHMICHEN M, MEISSNER C, KÖNIG H G. Brain injury after gunshot wounding: morphometric analysis of cell destruction caused by temporary cavitation [J]. Journal of Neurotrauma, 2000, 17(2): 155–162. DOI: 10.1089/neu.2000.17.155.
    [39] XI X F, ZHONG P. Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2001, 109(3): 1226–1239. DOI: 10.1121/1.1349183.
    [40] HONG Y, SARNTINORANONT M, SUBHASH G, et al. Localized tissue surrogate deformation due to controlled single bubble cavitation [J]. Experimental Mechanics, 2016, 56(1): 97–109. DOI: 10.1007/s11340-015-0024-2.
    [41] PANZER M B, MYERS B S, CAPEHART B P, et al. Development of a finite element model for blast brain injury and the effects of CSF cavitation [J]. Annals of Biomedical Engineering, 2012, 40(7): 1530–1544. DOI: 10.1007/s10439-012-0519-2.
    [42] CRAMER Ⅲ H C, ESTRADA J B, SCIMONE M T, et al. Inertial microcavitation as a neural cell damage mechanism in a 3D in vitro model of blast traumatic brain injury [J]. Biophysical Journal, 2018, 114(3): 518A. DOI: 10.1016/j.bpj.2017.11.2828.
    [43] GOELLER J, WARDLAW A, TREICHLER D, et al. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury [J]. Journal of Neurotrauma, 2012, 29(10): 1970–1981. DOI: 10.1089/neu.2011.2224.
    [44] SALZAR R S, TREICHLER D, WARDLAW A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads [J]. Journal of Neurotrauma, 2017, 34(8): 1589–1602. DOI: 10.1089/neu.2016.4600.
    [45] BHATTACHARJEE Y. Shell shock revisited: solving the puzzle of blast trauma [J]. Science, 2008, 319(5862): 406–408. DOI: 10.1126/science.319.5862.406.
    [46] CHEN Y, HUANG W. Non-impact, blast-induced mild TBI and PTSD: concepts and caveats [J]. Brain Injury, 2011, 25(7/8): 641–650. DOI: 10.3109/02699052.2011.580313.
    [47] GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
    [48] BAIN A C, MEANEY D F. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury [J]. Journal of Biomechanical Engineering, 2000, 122(6): 615–622. DOI: 10.1115/1.1324667.
    [49] WRIGHT R M, POST A, HOSHIZAKI B, et al. A multiscale computational approach to estimating axonal damage under inertial loading of the head [J]. Journal of Neurotrauma, 2013, 30(2): 102–118. DOI: 10.1089/neu.2012.2418.
    [50] GIORDANO C, KLEIVEN S. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue [J]. Journal of the Royal Society Interface, 2014, 11(91): 20130914. DOI: 10.1098/rsif.2013.0914.
    [51] GUPTA R K, TAN X G, SOMAYAJI M R, et al. Multiscale modelling of blast-induced TBI mechanobiology—from body to neuron to molecule [J]. Defence Life Science Journal, 2017, 2(1): 3–13. DOI: 10.14429/dlsj.2.10369.
    [52] WARD C, CHAN M, NAHUM A. Intracranial pressure—a brain injury criterion [J]. SAE Transactions, 1980: 3867–3880. https://www.jstor.org/stable/44632636.
    [53] RODRÍGUEZ-MILLÁN M, TAN L B, TSE K N, et al. Effect of full helmet systems on human head responses under blast loading [J]. Materials & Design, 2017, 117: 58–71. DOI: 10.1016/j.matdes.2016.12.081.
    [54] GARCIA-GONZALEZ D, RACE N S, VOETS N L, et al. Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations [J]. Scientific Reports, 2018, 8(1): 10273. DOI: 10.1038/s41598-018-28271-7.
    [55] KALRA A, ZHU F, FENG K, et al. Development and validation of a numerical model of the swine head subjected to open-field blasts [J]. Shock Waves, 2017, 27(6): 947–964. DOI: 10.1007/s00193-017-0760-6.
    [56] ZHU F, CHOU C C, YANG K H, et al. Some considerations on the threshold and inter-species scaling law for primary blast-induced traumatic brain injury: a semi-analytical approach [J]. Journal of Mechanics in Medicine and Biology, 2013, 13(4): 1350065. DOI: 10.1142/S0219519413500656.
    [57] ZHU F, SKELTON P, CHOU C C, et al. Biomechanical responses of a pig head under blast loading: a computational simulation [J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(3): 392–407. DOI: 10.1002/cnm.2518.
    [58] ZHU F, WAGNER C, DAL CENGIO LEONARDI A, et al. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation [J]. Biomechanics and Modeling in Mechanobiology, 2012, 11(3): 341–353. DOI: 10.1007/s10237-011-0314-2.
    [59] ZHU F, MAO H, LEONARDI A D C, et al. Development of an FE model of the rat head subjected to air shock loading [J]. Stapp Car Crash Journal, 2010, 54: 211. DOI: 10.4271/2010-22-0011.
    [60] BASS C R, PANZER M B, RAFAELS K A, et al. Brain injuries from blast [J]. Annals of Biomedical Engineering, 2012, 40(1): 185–202. DOI: 10.1007/s10439-011-0424-0.
    [61] COURTNEY M W, COURTNEY A C. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms [J]. Neuroimage, 2011, 54(S1): S55-S61. DOI: 10.1016/j.neuroimage.2010.05.025.
    [62] 栗志杰, 由小川, 柳占立, 等. 一种物理头部模型和测试系统: CN201810055338.5 [P]. 2018-06-15.

    LI Z J, YOU X C, LIU Z L, et al. Physical head model and test system: CN201810055338.5 [P]. 2018-06-15.
    [63] NEMAT-NASSER S, AMIRKHIZI A, HOLZWORTH K, et al. Modification and engineering of HSREP to achieve unique properties: block copolymer-based multiscale composites for shock mitigation [J]. Elastomeric Polymers with High Rate Sensitivity: Applications in Blast, Shockwave, and Penetration Mechanics, 2015: 319–335. DOI: 10.1016/B978-0-323-35400-4.00009-X.
    [64] LI J T, MA T, HUANG C, et al. Protective mechanism of helmet under far-field shock wave [J]. International Journal of Impact Engineering, 2020, 143: 103617. DOI: 10.1016/j.ijimpeng.2020.103617.
    [65] LIU M D, ZHANG C, LIU W B, et al. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes [J]. Frontiers in Cellular Neuroscience, 2015, 9: 168. DOI: 10.3389/fncel.2015.00168.
    [66] RUBOVITCH V, TEN-BOSCH M, ZOHAR O, et al. A mouse model of blast-induced mild traumatic brain injury [J]. Experimental Neurology, 2011, 232(2): 280–289. DOI: 10.1016/j.expneurol.2011.09.018.
    [67] DAVIDSSON J, ANGERIA M, RISLING M. Injury threshold for sagittal plane rotational induced diffuse axonal injuries[C] // Proceedings of the International Research Conference on the Biomechanics of Impact (IRCOBI). York, UK: SAE, 2009: 43–56.
    [68] RISLING M, SKÖLD M, LARSSON I L, et al. Leakage of S-100 protein after high velocity penetration injury to the brain [C]// Proceedings of the 7th International Neurotrauma Symposium. Adelaide: Medimond, 2004: 119–124.
    [69] CHENG J M, GU J W, MA Y, et al. Development of a rat model for studying blast-induced traumatic brain injury [J]. Journal of the Neurological Sciences, 2010, 294(1/2): 23–28. DOI: 10.1016/j.jns.2010.04.010.
    [70] AGOSTON D V, ELSAYED M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder [J]. Frontiers in Neurology, 2012, 3: 107. DOI: 10.3389/fneur.2012.00107.
    [71] D’HOOGE R, DE DEYN P P. Applications of the Morris water maze in the study of learning and memory [J]. Brain Research Reviews, 2001, 36(1): 60–90. DOI: 10.1016/S0165-0173(01)00067-4.
    [72] MORRIS R G M, GARRUD P, RAWLINS J N P, et al. Place navigation impaired in rats with hippocampal lesions [J]. Nature, 1982, 297(5868): 681–683. DOI: 10.1038/297681a0.
    [73] FRANKLYN M, LEE P V S. Military injury biomechanics: the cause and prevention of impact injuries [M]. Boca Raton: CRC Press, 2017.
    [74] OJO J O, MOUZON B, ALGAMAL M, et al. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau oligomers [J]. Journal of Neuropathology & Experimental Neurology, 2016, 75(7): 636–655. DOI: 10.1093/jnen/nlw035.
    [75] LEE J, JING B B, PORATH L E, et al. Shock wave energy dissipation in catalyst-free poly (dimethylsiloxane) vitrimers [J]. Macromolecules, 2020, 53(12): 4741–4747. DOI: 10.1021/acs.macromol.0c00784.
    [76] SARVA S S, DESCHANEL S, BOYCE M C, et al. Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates [J]. Polymer, 2007, 48(8): 2208–2213. DOI: 10.1016/j.polymer.2007.02.058.
    [77] PONTALIER Q, LHOUMEAU M, FROST D L. Blast wave mitigation in granular materials [J]. AIP Conference Proceedings, 2018, 1979(1): 110014. DOI: 10.1063/1.5044933.
    [78] GRUJICIC M, RAMASWAMI S, SNIPES J S, et al. RETRACTED: potential improvement in helmet blast-protection via the use of a polyurea external coating: combined experimental/computational analyses [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234(3): 337–367. DOI: 10.1177/1464420716644472.
    [79] JENSON D, UNNIKRISHNAN V. Multiscale simulation of ballistic composites for blast induced traumatic brain injury mitigation [C] // Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal: American Society of Mechanical Engineers, 2014. DOI: 10.1115/IMECE2014-40262.
    [80] SINGH D, CRONIN D S. Efficacy of visor and helmet for blast protection assessed using a computational head model [J]. Shock Waves, 2017, 27(6): 905–918. DOI: 10.1007/s00193-017-0732-x.
    [81] ZHANG T G, SATAPATHY S S. Effect of helmet pads on the load transfer to head under blast loadings [C] // Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal: American Society of Mechanical Engineers, 2014. DOI: 10.1115/IMECE2014-37143.
    [82] VALVERDE-MARCOS B, RUBIO I, ANTONA-MAKOSHI J, et al. Numerical analysis of EOD helmet under blast load events using human head model [J]. Applied Sciences, 2020, 10(22): 8227. DOI: 10.3390/app10228227.
    [83] TSE K M, TAN L B, SAPINGI M A B, et al. The role of a composite polycarbonate-aerogel face shield in protecting the human brain from blast-induced injury: a fluid-structure interaction (FSI) study [J]. Journal of Sandwich Structures & Materials, 2019, 21(7): 2484–2511. DOI: 10.1177/1099636217733369.
  • 期刊类型引用(1)

    1. 张世文,陈艳,但加坤,李英雷,刘明涛,汤铁钢. 爆轰驱动下45钢半球壳膨胀断裂破片回收研究. 高压物理学报. 2023(02): 159-168 . 百度学术

    其他类型引用(0)

  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  817
  • HTML全文浏览量:  412
  • PDF下载量:  219
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-05-09

目录

/

返回文章
返回