火炮在不同介质中发射的膛口流场特性分析

张旋 余永刚 张欣尉

张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析[J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
引用本文: 张旋, 余永刚, 张欣尉. 火炮在不同介质中发射的膛口流场特性分析[J]. 爆炸与冲击, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
Citation: ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056

火炮在不同介质中发射的膛口流场特性分析

doi: 10.11883/bzycj-2021-0056
基金项目: 中国博士后科学基金(2020M681596)
详细信息
    作者简介:

    张 旋(1991- ),男,博士研究生,2665933828@qq.com

    通讯作者:

    余永刚(1963- ),男,博士,教授,博士生导师,yygnjust801@163.com

  • 中图分类号: O358

Analysis of muzzle flow field characteristics of gun fired in different media

  • 摘要: 为研究水下炮密封式发射膛口流场及在不同介质中的膛口流场分布特性,建立了水下密封式发射二维轴对称膛口多相流数值模型。采用VOF(volume of fluid)模型、标准 k-$\varepsilon $湍流模型,结合用户自定义函数及动网格技术,分别对水下密封式发射与空气中发射膛口流场演化过程进行了数值模拟与对比。计算结果表明,火炮在水下发射时的膛口流场与空气中发射时有明显差异。水下密封式发射时的最大膛压与空气中基本相同,弹丸初速较空气中发射降低了32 m/s,而膛口压力与温度有明显的升高;水下密封式发射时大约在140 μs初步形成马赫盘,而空气中发射时马赫盘形成较晚,约在320 μs;与空气中发射相比,水下发射时的激波核心区面积更小,且弹丸头部不存在冠状冲击波。水下密封式发射时,马赫盘距离膛口轴向位移随时间变化呈指数增长;空气中发射时,马赫盘距离膛口轴向位移随时间变化呈线性增长。
  • 图  1  计算模型

    Figure  1.  Calculation model

    图  2  膛口到弹底压力沿轴向变化曲线

    Figure  2.  Variation of axial pressure from the muzzleto the projectile bottom

    图  3  实验系统(a)和数值模拟得到相应时刻的模拟相图与实验阴影图对比(b)

    Figure  3.  Experimental system (a) and the comparison of experimental shadow diagram and simulation results (b)

    图  4  射流头部轴向最大位移对比

    Figure  4.  Comparison of maximum axial displacement of jet head

    图  5  膛口燃气压力变化曲线

    Figure  5.  Variation of muzzle gas pressure

    图  6  空气中膛口压力分布及纹影图

    Figure  6.  Pressure distribution and schlieren diagram at muzzle in air

    图  7  水下膛口压力分布及纹影图

    Figure  7.  Pressure distribution and schlieren diagram at muzzle under water

    图  8  200 μs时轴向压力分布曲线

    Figure  8.  Axial pressure distribution curves at 200 μs

    图  9  水下不同时刻轴向压力分布曲线

    Figure  9.  Distribution curves of underwater axial pressureat different moments

    图  10  两种环境下膛口流场流谱

    Figure  10.  Flow spectrum of muzzle flow field in two environments

    图  11  水下发射时膛口马赫数分布及纹影图

    Figure  11.  Mach number distribution and schlieren diagram at muzzle under water

    图  12  空气中发射时膛口马赫数及纹影图

    Figure  12.  Mach number distribution and schlieren diagram at muzzle in air

    图  13  马赫数轴向分布曲线

    Figure  13.  Axial distribution of Mach number

    图  14  两种环境下的马赫盘轴向位移随时间变化曲线

    Figure  14.  Mach disc’s axial displacement with time in two environments

    图  15  不同介质中弹丸速度随时间变化曲线

    Figure  15.  Variation of projectile velocitywith time in different media

    表  1  内弹道及膛口参数

    Table  1.   Interior ballistics and muzzle parameters

    发射环境x/mv0/(m·s−1pm/MPap0/MPaT0/K
    空气中 1.94 985 317 62 2 152
    水下 1.94 953 324 96 2 380
    下载: 导出CSV
  • [1] STEWARD B J, GROSS K C, PERRAM G P. Optical characterization of large caliber muzzle blast waves [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(6): 564–575. DOI: 10.1002/prep.201100037.
    [2] MOUMEN A, GROSSEN J, NDINDABAHIZI I. et al. Visualization and analysis of muzzle flow fields using the background-oriented schlieren technique [J]. Journal of Visualization, 2020, 23(3): 409–423. DOI: 10.1007/s12650-020-00639-w.
    [3] 郭则庆, 王杨, 姜孝海, 等. 小口径武器膛口流场可视化实验 [J]. 实验流体力学, 2012, 26(2): 46–50. DOI: 10.3969/j.issn.1672-9897.2012.02.010.

    GUO Z Q, WANG Y, JIANG X H, et al. Visual experiment on the muzzle flow field of the small caliber gun [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 46–50. DOI: 10.3969/j.issn.1672-9897.2012.02.010.
    [4] 李子杰, 王浩. 膛口初始流场对火药燃气射流的影响 [J]. 含能材料, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.

    LI Z J, WANG H. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.
    [5] 陈川琳, 黄陈磊, 许辉, 等. 小口径步枪弹头后效期运动特性试验与数值研究 [J]. 兵工学报, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.

    CHEN C L, HUANG C L, XU H, et al. Experimental and numerical research on motion characteristics of a small caliber bullet in muzzle flows [J]. Acta Armamentarii, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.
    [6] HARBY K, CHIVA S, MUÑOZ-COBO J L. An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient [J]. Experimental Thermal and Fluid Science, 2014, 53: 26–39. DOI: 10.1016/j.expthermflusci.2013.10.009.
    [7] 甘晓松, 贾有军, 鲁传敬, 等. 水下燃气射流流场数值研究 [J]. 固体火箭技术, 2009, 32(1): 23–26.

    GAN X S, JIA Y J, LU C J, et al. Research on numerical simulation of combustion gas jets under water [J]. Journal of Solid Rocket Technology, 2009, 32(1): 23–26.
    [8] XUE X C, YU Y G, ZHANG Q. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber [J]. Journal of Hydrodynamics, 2013, 25(5): 763–771. DOI: 10.1016/S1001-6058(13)60423-0.
    [9] 刘育平, 李金新, 杨臻, 等. 水下炮内弹道分析与数值仿真 [J]. 火炮发射与控制学报, 2007(4): 30–33. DOI: 10.3969/j.issn.1673-6524.2007.04.009.

    LIU Y P, LI J X, YANG Z, et al. Internal ballistics analysis and numerical simulation of underwater gun [J]. Journal of Gun Launch and Control, 2007(4): 30–33. DOI: 10.3969/j.issn.1673-6524.2007.04.009.
    [10] 易文俊, 李铁鹏, 熊天红, 等. 水下高速航行体自然超空泡形态特性仿真研究 [J]. 南京理工大学学报(自然科学版), 2009, 33(3): 330–334. DOI: 10.3969/j.issn.1005-9830.2009.03.012.

    YI W J, LI T P, XIONG T H, et al. Simulation on natural supercavitation characteristics of underwater high-speed vehicle [J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(3): 330–334. DOI: 10.3969/j.issn.1005-9830.2009.03.012.
    [11] 施红辉, 周栋, 温俊生, 等. 基于ALE方法的弹性圆柱壳入水时的流固耦合模拟 [J]. 弹道学报, 2020, 32(1): 9–14; 46. DOI: 10.12115/j.Issn.1004-499X(2020)01-002.

    SHI H H, ZHOU D, WEN J S, et al. Fluid-solid interaction simulation of elastic cylindrical shell penetrating water based on the ALE method [J]. Journal of Ballistics, 2020, 32(1): 9–14; 46. DOI: 10.12115/j.Issn.1004-499X(2020)01-002.
    [12] 刘富强, 罗凯, 黄闯, 等. 并列超空泡射弹弹道特性研究 [J]. 水下无人系统学报, 2020, 28(2): 202–208. DOI: 10.11993/j.issn.2096-3920.2020.02.013.

    LIU F Q, LUO K, HUANG C, et al. Study on ballistic characteristics of the parallel supercavitating projectiles [J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202–208. DOI: 10.11993/j.issn.2096-3920.2020.02.013.
    [13] 黄海龙, 王聪, 余德磊, 等. 高速射弹并联入水过程空泡演化特性试验 [J]. 哈尔滨工业大学学报, 2020, 52(12): 15–20. DOI: 10.11918/201903028.

    HUANG H L, WANG C, YU D L, et al. Experimental study on cavitation evolution of high-speed projectile water entry in parallel [J]. Journal of Harbin Institute of Technology, 2020, 52(12): 15–20. DOI: 10.11918/201903028.
    [14] GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [15] 张欣尉, 余永刚. 水下发射对机枪膛口温度场影响的数值分析 [J]. 含能材料, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.

    ZHANG X W, YU Y G. Numerical analysis for the effect of underwater launch on the temperature field of machine gun muzzle [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.
    [16] 张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析 [J]. 爆炸与冲击, 2020, 40(10): 97–109. DOI: 10.11883/bzycj-2019-0478.

    ZHANG J H, YU Y G. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths [J]. Explosion and Shock Waves, 2020, 40(10): 97–109. DOI: 10.11883/bzycj-2019-0478.
    [17] 李鸿志, 姜孝海, 王杨, 等. 中间弹道学 [M]. 北京: 北京理工大学出版社, 2015: 31–33.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  355
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 修回日期:  2021-08-23
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回