黏弹性固体中地下爆炸辐射地震波能量的演化

卢强 丁洋 刘赟哲 唐仕英 郭志昀 王占江

卢强, 丁洋, 刘赟哲, 唐仕英, 郭志昀, 王占江. 黏弹性固体中地下爆炸辐射地震波能量的演化[J]. 爆炸与冲击, 2021, 41(9): 093201. doi: 10.11883/bzycj-2021-0058
引用本文: 卢强, 丁洋, 刘赟哲, 唐仕英, 郭志昀, 王占江. 黏弹性固体中地下爆炸辐射地震波能量的演化[J]. 爆炸与冲击, 2021, 41(9): 093201. doi: 10.11883/bzycj-2021-0058
LU Qiang, DING Yang, LIU Yunzhe, TANG Shiying, GUO Zhiyun, WANG Zhanjiang. Evolution of the radiated seismic wave energy of underground explosion in visco-elastic solids[J]. Explosion And Shock Waves, 2021, 41(9): 093201. doi: 10.11883/bzycj-2021-0058
Citation: LU Qiang, DING Yang, LIU Yunzhe, TANG Shiying, GUO Zhiyun, WANG Zhanjiang. Evolution of the radiated seismic wave energy of underground explosion in visco-elastic solids[J]. Explosion And Shock Waves, 2021, 41(9): 093201. doi: 10.11883/bzycj-2021-0058

黏弹性固体中地下爆炸辐射地震波能量的演化

doi: 10.11883/bzycj-2021-0058
基金项目: 国家自然科学基金(12072290)
详细信息
    作者简介:

    卢 强(1984- ),男,博士,副研究员,luqiang@nint.ac.cn

    通讯作者:

    王占江(1961- ),男,博士,研究员,wangzhanjiang@nint.ac.cn

  • 中图分类号: O382.2;O347.4

Evolution of the radiated seismic wave energy of underground explosion in visco-elastic solids

  • 摘要: 地下爆炸与介质的能量耦合和介质中的波传播机制是理解地下爆炸源物理的重要基础。为研究地下爆炸辐射地震波能量的传播衰减规律,分析了黏弹性介质中地下爆炸地震波能量的组成。基于无限介质中黏弹性球面波理论,给出了速度、位移、应力、应变等物理量Laplace域的理论解。利用Laplace数值逆求解方法,建立了黏弹性介质中地下爆炸辐射地震波场的计算方法。以干黄土作为典型黏弹性材料,计算给出了地震波能量的传播特征,分析了地下爆炸辐射能量的传播衰减规律。结果表明:(1)在黏弹性介质中,某球面处流入的能量随半径增加而逐渐降低。在理想弹性介质中,某球面处流入的能量在几倍弹性半径外即可稳定到某一定值;(2)在某一固定的有限观测区域内,当观测时间足够长时,势能和耗散能均趋于某一定值,辐射动能趋于零;(3)当有限的观测区域能容纳一个完整波长的地震波时,地震波辐射动能的稳态值随波传播距离的增大而减小,总体上可以用指数函数和幂函数进行分段拟合。
  • 图  1  黏弹性固体中爆炸地震波能量的组成

    Figure  1.  The composition of the energy of explosion seismic wave in visco-elastic solids

    图  2  广义Maxwell体模型

    Figure  2.  The generalized Maxwell element model

    图  3  黄土中地下爆炸辐射地震波能量随观测区域的变化

    Figure  3.  The variation of the energy of the radiated seismic wave from underground explosion in loess with the observation region

    图  4  黄土不同半径球面处最终流入能量$W(r,\infty )$的变化

    Figure  4.  The changes in the inflow energy $W(r,\infty )$ at different radii of the sphere in loess

    图  5  黄土中不同时刻粒子速度的空间分布

    Figure  5.  The spatial distribution of the particle velocity at different times in loess

    图  6  黄土中不同时刻辐射动能的空间分布

    Figure  6.  The spatial distribution of the radiated kinetic energy at different times in loess

    图  7  黄土中地震波辐射动能随波前位置的变化

    Figure  7.  The variation of the radiated kinetic energy of seismic wave with the position of wave front in loess

    表  1  黄土黏弹性参数[18]

    Table  1.   The visco-elastic parameters of loess[18]

    ρ/(kg·m−3E0/GPaθ0/µsE1/GPaθ1/µsµ
    1 8001.600.3321.00.25
    下载: 导出CSV
  • [1] 靳平, 徐果明, 楼为涛. 受低频动态正压力加载的椭球腔的地震矩张量表示及其在无限介质中辐射的地震波 [J]. 地震学报, 1997, 19(5): 447–456.

    JIN P, XU G M, LOU W T. Seismic moment tensor representation of ellipsoidal cavity loaded with low frequency dynamic positive pressure and seismic wave radiated in infinite medium [J]. Aata Seismologica Sinica, 1997, 19(5): 447–456.
    [2] CHOY G L, BOATWRIGHT J. Global patterns of radiated seismic energy and apparent stress [J]. Journal of Geophysical Research, 1995, 100(89): 18205–18228. DOI: 10.1029/95JB01969.
    [3] BOATWRIGHT J, CHOY G L. Teleseismic estimates of the energy radiated by shallow earthquakes [J]. Journal of Geophysical Research, 1986, 91(B2): 2095–2112. DOI: 10.1029/JB091iB02p02095.
    [4] MUELLER R A, MURPHY J R. Seismic characteristics of underground nuclear detonations: Part Ⅰ: seismic spectrum scaling [J]. Bulletin of the Seismological Society of America, 1971(61): 1675–1692.
    [5] MUELLER R A, MURPHY J R. Seismic characteristics of underground nuclear detonations: Part Ⅱ. Elastic energy and magnitude determinations [J]. Bulletin of the Seismological Society of America, 1971(61): 1693–1704.
    [6] 周钟, 王肖钧, 肖卫国, 等. 花岗岩介质中地下爆炸震源函数研究 [J]. 爆炸与冲击, 2007, 27(1): 18–25. DOI: 10.11883/1001-1455(2007)01-0018-08.

    ZHOU Z, WANG X J, XIAO W G, et al. Study on the main characteristics of underground explosion seismic source function in granite [J]. Explosion and Shock Waves, 2007, 27(1): 18–25. DOI: 10.11883/1001-1455(2007)01-0018-08.
    [7] MURPHY J R. Free-field seismic observations from underground nuclear explosions [M]. Explosion Source Phenomenology: American Geophysical Union Monograph, 1991. DOI: 10.1029/GM065p0025.
    [8] 袁乃荣, 刘瑞丰, 李赞, 等. 能量震级及其测定 [J]. 地震地磁观测与研究, 2018, 39(5): 1–7. DOI: 10.3969/j.issn.1003-3246.2018.05.001.

    YUAN N R, LIU R F, LI Z, et al. Energy magnitude and its determination [J]. Seismological and Geomagnetic Observation and Research, 2018, 39(5): 1–7. DOI: 10.3969/j.issn.1003-3246.2018.05.001.
    [9] 李赞, 刘瑞丰, 孔韩东, 等. 中强地震能量震级测定 [J]. 地震学报, 2019, 41(3): 289–301. DOI: 10.11939/jass.20180139.

    LI Z, LIU R F, KONG H D, et al. Energy magnitude determination of moderate-strong earthquakes [J]. Acta Seismologica Sinica, 2019, 41(3): 289–301. DOI: 10.11939/jass.20180139.
    [10] SANCHIDRIÁR J A, SEGARRA P, LÓPEM L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 130–147.
    [11] 田振农, 张乐文, 李世海. 岩体中爆腔内压力脉动特征和爆炸能量分布的数值模拟 [J]. 岩土工程学报, 2010, 32(8): 1247–1252. DOI: http://dspace.imech.ac.cn/handle/311007/43766.

    TIAN Z N, ZHANG L W, LI S H. Numerical simulation of pulsation features of pressure in explosion cavity and distribution of explosive energy in rock blasting [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1247–1252. DOI: http://dspace.imech.ac.cn/handle/311007/43766.
    [12] 郭家豪, 范锦彪. 基于振动的钻地弹爆炸能量计算方法研究 [J]. 振动与冲击, 2020, 39(10): 180–184.

    GUO J H, FAN J B. Numerical calculation method for earth penetrating weapon explosion energy based on vibration [J]. Journal of Vibration and Shock, 2020, 39(10): 180–184.
    [13] 吴亮, 卢文波, 宗琦. 岩石中柱状装药爆炸能量分布 [J]. 岩土力学, 2006, 27(5): 734–738.

    WU L, LU W B, ZONG Q. Distribution of explosive energy consumed by column charge in rock [J]. Rock and Soil Mechanics, 2006, 27(5): 734–738.
    [14] 肖卫国, 王肖钧, 朱号锋, 等. 不同介质地下爆炸的地震耦合效应 [J]. 爆炸与冲击, 2012, 32(3): 267–272. DOI: 10.11883/1001-1455(2012)03-0267-06.

    XIAO W G, WANG X J, ZHU H F, et al. Experimental study on seismic coupling effects of underground explosions in different materials [J]. Explosion and Shock waves, 2012, 32(3): 267–272. DOI: 10.11883/1001-1455(2012)03-0267-06.
    [15] LU Q, WANG Z J. Studies of the propagation of viscoelastic spherical divergent stress waves based on the generalized Maxwell model [J]. Journal of Sound and Vibration, 2016, 371: 183–195. DOI: 10.1016/j.jsv.2016.02.034.
    [16] 卢强, 王占江. 标准线性固体材料中球面应力波传播特征研究 [J]. 物理学报, 2015, 64(10): 108301. DOI: 10.7498/aps.64.108301.

    LU Q, WANG Z J. Characteristics of spherical stress wave propagation in the standard linear solid material [J]. Acta Physica Sinica, 2015, 64(10): 108301. DOI: 10.7498/aps.64.108301.
    [17] LU Q, WANG Z J, Ding Y. Inversion for the complex elastic modulus of material from spherical wave propagation data in free field [J]. Journal of Sound and Vibration, 2019, 459: 1–18. DOI: 10.1016/j.jsv.2019.114851.
    [18] 卢强, 王占江, 李进, 等. 球面波加载下黄土线黏弹性本构关系 [J]. 岩土力学, 2012, 33(11): 3292–3298.

    LU Q, WANG Z J, LI J, et al. Linear viscoelastic constitutive relation of loess under spherical stress wave [J]. Rock and Soil Mechanics, 2012, 33(11): 3292–3298.
    [19] JAMES K G, JOHN Q E, CARGILE J D. Cavity expansion experiments with spherical explosive charges in concrete [R]. US Army Corps of Engineers, 2009.
    [20] WANG L L, LAI H W, WANG Z J, et al. Studies on nonlinear visco-elastic spherical waves by characteristics analyses and its application [J]. International Journal of Impact Engineering, 2013, 55: 1–10. DOI: 10.1016/j.ijimpeng.2012.12.001.
    [21] MILLER S A, FLORENCE A L. Laboratory particle velocity experiments on rock from a USSR underground nuclear tests site: AD-A223108 [R]. 1990.
    [22] 王占江, 李孝兰, 张若棋, 等. 固体介质中球形发散波的实验装置 [J]. 爆炸与冲击, 2000, 20(2): 103–109.

    WANG Z J, LI X L, ZHANG R Q, et al. An experimental apparatus for spherical wave propagation in solid [J]. Explosion and Shock Waves, 2000, 20(2): 103–109.
    [23] 卢强, 王占江, 朱玉荣, 等. 基于波传播系数构建填实爆炸下花岗岩中运动及变形场 [J]. 爆炸与冲击, 2019, 39(8): 1–10. DOI: 10.11883/bzycj-2019-0140.

    LU Q, WANG Z J, ZHU Y R, et al. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient [J]. Explosion and Shock Waves, 2019, 39(8): 1–10. DOI: 10.11883/bzycj-2019-0140.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  614
  • HTML全文浏览量:  236
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-04-21
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回