甲烷/煤尘复合爆炸火焰的传播特性

周永浩 甘波 姜海鹏 黄磊 高伟

周永浩, 甘波, 姜海鹏, 黄磊, 高伟. 甲烷/煤尘复合爆炸火焰的传播特性[J]. 爆炸与冲击, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064
引用本文: 周永浩, 甘波, 姜海鹏, 黄磊, 高伟. 甲烷/煤尘复合爆炸火焰的传播特性[J]. 爆炸与冲击, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064
ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064
Citation: ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064

甲烷/煤尘复合爆炸火焰的传播特性

doi: 10.11883/bzycj-2021-0064
基金项目: 国家重点研发计划(2018YFC0807900)
详细信息
    作者简介:

    周永浩(1995- ),男,博士研究生,rambozhou@mail.dlut.edu.cn

    通讯作者:

    高 伟(1984- ),男,博士,教授,博士生导师,gaoweidlut@dlut.edu.cn

  • 中图分类号: O389; X932

Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions

  • 摘要: 为揭示甲烷/煤尘复合爆炸火焰的传播机理,利用气粉两相混合爆炸实验系统,在低于甲烷爆炸下限条件下,采用高速摄影机记录火焰传播图像,通过热电偶采集火焰温度,研究了煤尘种类以及甲烷体积分数对甲烷/煤尘复合火焰传播特性的影响。结果表明:挥发分是衡量煤尘燃烧特性的主导因素;随着煤尘挥发分的升高,燃烧反应增强,火焰传播速度升高,火焰温度升高;挥发分含量差异较小时,水分含量越低,燃烧反应越剧烈;在相同条件下,焦煤的燃烧反应强度最高,其次为长焰煤,最后为褐煤;随着甲烷体积分数的增加,煤尘颗粒的燃烧可由释放挥发分的扩散燃烧转变为气相预混燃烧,燃烧反应增强,火焰传播速度和火焰温度显著升高;热辐射和热对流作用促进煤尘颗粒热解,释放挥发分进行燃烧反应,维持复合火焰的持续传播;随着混合体系中甲烷体积分数的增加,混合爆炸机制由粉尘驱动型爆炸转为气体驱动型爆炸,燃烧反应增强;甲烷/煤尘复合爆炸火焰可由未燃区、预热区、气相燃烧区、多相燃烧区和焦炭燃烧区5部分组成,湍流扰动导致燃烧介质空间分布存在差异,使得燃烧区无规则交错分布。
  • 图  1  气粉两相混合爆炸火焰传播实验系统

    Figure  1.  Experimental system for flame propagation of gas-dust hybrid explosion

    图  2  粒径分布与扫描电子显微镜图像

    Figure  2.  Particle size distributions and SEM images

    图  3  煤尘热解特性

    Figure  3.  Pyrolysis characteristics of the coal samples

    图  4  甲烷体积分数为4.1%时3种煤样复合火焰传播图像

    Figure  4.  Flame propagation images of the hybrid flame of three coal species at 4.1% methane volume fraction

    图  5  甲烷体积分数为4.1%时3种煤样复合火焰传播速度和火焰温度

    Figure  5.  Flame propagation velocity and flame temperature of three coal species at 4.1% methane volume fraction

    图  6  三种不同甲烷体积分数的复合火焰传播图像

    Figure  6.  Flame propagation images of the hybrid flame at different methane volume fractions

    图  7  三种不同体积分数甲烷的复合火焰传播速度和火焰温度

    Figure  7.  Flame propagation velocity and flame temperature at different methane volume fractions

    图  8  甲烷/煤尘复合爆炸火焰传播机理

    Figure  8.  Methane/coal hybrid flame propagation mechanisms

    表  1  煤样工业分析和元素分析结果

    Table  1.   Proximate and ultimate analysis of different coal species

    煤尘种类各组分质量分数/%各元素质量分数/%
    挥发分水分灰分固定碳CHONS
    焦煤34.041.5511.7552.6666.974.1214.041.290.29
    长焰煤32.229.32 9.7448.7265.814.79 8.930.920.49
    褐煤26.505.14 6.7861.5971.734.0010.390.731.24
    下载: 导出CSV

    表  2  煤尘粒径特性

    Table  2.   Characteristic parameters of the coal samples

    煤尘种类粒径/μmD[4,3]/μmD[3,2]/μmS/(m2·g–1d(0.1)/μmd(0.5)/μmd(0.9)/μm
    焦煤0~7522.745 6.1380.9782.60416.66551.655
    褐煤0~7522.482 5.5671.0802.31814.65254.871
    长焰煤0~7533.94611.8990.5046.01628.20870.885
    下载: 导出CSV
  • [1] YAN X Q, YU J L. Dust explosion incidents in China [J]. Process Safety Progress, 2012, 31(2): 187–189. DOI: 10.1002/prs.11482.
    [2] ZHENG Y P, FENG C G, JING G X, et al. A statistical analysis of coal mine accidents caused by coal dust explosions in China [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4): 528–532. DOI: 10.1016/j.jlp.2009.02.010.
    [3] MEDINA C H, MACCOITIR B, SATTAR H, et al. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1 m3 dust explosion equipment [J]. Fuel, 2015, 151: 91–101. DOI: 10.1016/j.fuel.2015.01.009.
    [4] SERAFIN J, BEBCAK A, BERNATIK A, et al. The influence of air flow on maximum explosion characteristics of dust-air mixtures [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 209–214. DOI: 10.1016/j.jlp.2012.11.002.
    [5] MITTAL M. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1106–1112. DOI: 10.1016/j.jlp.2013.04.012.
    [6] LI Q Z, WANG K, ZHENG Y N, et al. Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust [J]. Powder Technology, 2016, 292: 290–297. DOI: 10.1016/j.powtec.2016.01.035.
    [7] TURKEVICH L A, DASTIDAR A G, HACHMEISTER Z, et al. Potential explosion hazard of carbonaceous nanoparticles: explosion parameters of selected materials [J]. Journal of Hazardous Materials, 2015, 295: 97–103. DOI: 10.1016/j.jhazmat.2015.03.069.
    [8] CAO W G, QIN Q F, CAO W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel [J]. Powder Technology, 2017, 310: 17–23. DOI: 10.1016/j.powtec.2017.01.019.
    [9] AJRASH M J, ZANGANEH J, MOGHTADERI B. The effects of coal dust concentrations and particle sizes on the minimum auto-ignition temperature of a coal dust cloud [J]. Fire and Materials, 2017: e2437. DOI: 10.1002/fam.2437.
    [10] MISHRA D P, AZAM S. Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace [J]. Fuel, 2018, 227: 424–433. DOI: 10.1016/j.fuel.2018.04.122.
    [11] BAYLESS D J, SCHROEDER A R, JOHNSON D C, et al. The effects of natural gas cofiring on the ignition delay of pulverized coal and coke particles [J]. Combustion Science and Technology, 1994, 98: 185–198. DOI: 10.1080/00102209408935404.
    [12] GAO W, DOBASHI R, MOGI T, et al. Effects of particle characteristics on flame propagation behavior during organic dust explosions in a half-closed chamber [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6): 993–999. DOI: 10.1016/j.jlp.2012.05.015.
    [13] JU W J, DOBASHI R, HIRANO T. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(6): 423–430. DOI: 10.1016/S0950-4230(98)00027-8.
    [14] LI Q Z, LIN B Q, WANG K, et al. Surface properties of pulverized coal and its effects on coal mine methane adsorption behaviors under ambient conditions [J]. Powder Technology, 2015, 270: 278–286. DOI: 10.1016/j.powtec.2014.10.020.
    [15] AJRASH M J, ZANGANEH J, MOGHTADERI B. Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 317–328. DOI: 10.1016/j.jlp.2016.01.009.
    [16] 冯永安. 基于 20 L 球形爆炸装置的甲烷对煤尘爆炸影响实验研究 [D]. 太原: 中北大学, 2013.

    FENG Y A. Experimental study of methane effects on coal dust explosion in 20 L spherical hermetic device [D]. Taiyuan: North University of China, 2013.
    [17] DUFAUD O, PERRIN L, TRAORE M, et al. Explosions of vapour/dust hybrid mixtures: a particular class [J]. Powder Technology, 2009, 190: 269–273. DOI: 10.1016/j.powtec.2008.04.046.
    [18] 平洋. 煤粉瓦斯耦合体系着火机理和实验研究 [D]. 沈阳: 东北大学, 2011.

    PING Y. Ignition mechanism and experimental research on coal & gas coupling system [D]. Shenyang: Northeastern University, 2011.
    [19] ZHOU Y H, BI M S, QI F. Experimental research into effects of obstacle on methane-coal dust hybrid explosion [J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 127–130. DOI: 10.1016/j.jlp.2011.07.003.
    [20] CLONEY C T, RIPLEY R C, PEGG M J, et al. Evaluating regime diagrams for closed volume hybrid explosions [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 912–918. DOI: 10.1016/j.jlp.2017.03.004.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  239
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 录用日期:  2021-11-22
  • 修回日期:  2021-05-13
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回