基于液体碳氢燃料的旋转爆轰燃烧特性研究

丁陈伟 翁春生 武郁文 白桥栋 汪小卫 董晓琳

丁陈伟, 翁春生, 武郁文, 白桥栋, 汪小卫, 董晓琳. 基于液体碳氢燃料的旋转爆轰燃烧特性研究[J]. 爆炸与冲击, 2022, 42(2): 022101. doi: 10.11883/bzycj-2021-0065
引用本文: 丁陈伟, 翁春生, 武郁文, 白桥栋, 汪小卫, 董晓琳. 基于液体碳氢燃料的旋转爆轰燃烧特性研究[J]. 爆炸与冲击, 2022, 42(2): 022101. doi: 10.11883/bzycj-2021-0065
DING Chenwei, WENG Chunsheng, WU Yuwen, BAI Qiaodong, WANG Xiaowei, DONG Xiaolin. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel[J]. Explosion And Shock Waves, 2022, 42(2): 022101. doi: 10.11883/bzycj-2021-0065
Citation: DING Chenwei, WENG Chunsheng, WU Yuwen, BAI Qiaodong, WANG Xiaowei, DONG Xiaolin. Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel[J]. Explosion And Shock Waves, 2022, 42(2): 022101. doi: 10.11883/bzycj-2021-0065

基于液体碳氢燃料的旋转爆轰燃烧特性研究

doi: 10.11883/bzycj-2021-0065
基金项目: 国家自然科学基金(12172177,11702143);中央高校基本科研业务费专项资金(30918011343);国防科技重点实验室基金(HTKJ2020KL011004-2)
详细信息
    作者简介:

    丁陈伟(1995- ),男,博士研究生,dcw95@foxmail.com

    通讯作者:

    翁春生(1964- ),男,博士,教授,博士生导师,wengcs@126.com

  • 中图分类号: O381

Combustion characteristics of rotating detonation based on liquid hydrocarbon fuel

  • 摘要: 为了探索液体碳氢燃料参与旋转爆轰所产生的不完全燃烧现象,采用守恒元与求解元方法,开展柱坐标系下的汽油/空气两相旋转爆轰燃烧室三维数值模拟研究,针对燃料喷注压力和反应物当量比对旋转爆轰流场结构及燃烧室性能的影响进行分析。分析结果表明:保持总当量比为1.00,随着燃料喷注压力的上升,燃烧室内燃料不均匀分布增强,产生局部富燃区,燃料在燃烧室未能完全反应,导致燃烧室燃料比冲下降;保持喷注压力不变,减小当量比,在贫燃工况下依然存在局部富燃区,导致燃烧室内出现不完全燃烧现象,降低燃烧室比冲性能。由此可知,反应物喷注方案对气液两相旋转爆轰的不完全燃烧有显著影响。
  • 图  1  旋转爆轰燃烧室压力分布[14]

    Figure  1.  Pressure distribution in the rotating detonation combustor[14]

    图  2  旋转爆轰燃烧室计算方案

    Figure  2.  Calculation scheme of the rotating detonation combustor

    图  3  燃烧室壁面压力曲线

    Figure  3.  Temporal variations of the pressure at a location immediately behind the out wall

    图  4  使用29万网格数计算温度分布

    Figure  4.  Temperature distribution of the out wall calculated using 290 000 grids (during steady rotation)

    图  5  使用0.6 mm网格壁温度和压力随时间变化曲线

    Figure  5.  Temporal variations of the pressure and temperature at a location immediately behind the out wall using 0.6 mm grids

    图  6  当量比为1.00,爆轰波稳定传播时燃烧室中燃料的质量分数分布

    Figure  6.  Mass fraction of the fuel in the combustor during the steady rotating detonation propagation when injected at the stoichiometric ratio

    图  7  燃料质量流量、当量比以及燃料比冲随时间变化曲线

    Figure  7.  Variations of the fuel mass flow, equivalent ratio and specific impulse with time

    图  8  爆轰波稳定传播时外壁的温度分布

    Figure  8.  Temperature distribution on the out wall during steady rotation

    图  9  爆轰波稳定传播时外壁燃料的质量分数分布

    Figure  9.  Mass fraction of fuel on the out wall during steady rotation

    图  10  爆轰波稳定传播时外壁氧气的质量分数分布

    Figure  10.  Mass fraction of oxygen on the out wall during steady rotation

    图  11  不同燃料喷注压力下旋转爆轰燃烧室入口的压力分布

    Figure  11.  Pressure distribution at the head of RDC under different fuel injection pressures

    图  12  爆轰波稳定传播时外壁的温度分布

    Figure  12.  Temperature distribution on the out wall during steady rotation

    图  13  爆轰波稳定传播时外壁燃料质量分数分布

    Figure  13.  Mass fraction of fuel on the out wall during steady rotation

    图  14  爆轰波稳定传播时外壁氧气质量分数分布

    Figure  14.  Mass fraction of oxygen on the out wall during steady rotation

    图  15  爆轰波稳定传播时外壁轴向速度分布(单位为m/s )

    Figure  15.  Axial velocity distribution at the out wall during steady rotation (unit in m/s)

    图  16  当量比约为1.00时,未反应燃料比例和反应燃料比冲随燃料供给压力的变化

    Figure  16.  Variations of the unreacted fuel ratio and the specific impulse of reactive fuel with the fuel supply pressure at the stoichiometric ratio

    图  17  当量比为0.90时,未反应燃料比例和反应燃料比冲随燃料喷注压力的变化

    Figure  17.  Variations of the unreacted fuel ratio and the specific impulse of reactive fuel with the fuel supply pressure when the equivalent ratio is 0.90

    图  18  未反应燃料比例与当量比的关系

    Figure  18.  Relationship between the unreacted fuel ratio and equivalence ratio

    表  1  燃烧室在不同燃料喷注压力下的表现(当量比约为1.00)

    Table  1.   Performance of RDC at different fuel supply pressures (equivalence ratio of about 1.00)

    算例燃料喷注压力/
    MPa
    空气流量/
    (g∙s−1
    当量比未燃燃料比例/%平均推力/N燃料比冲 /s基于反应燃料的燃料比冲/s爆轰波传播速度/
    (m∙s−1
    10.45423.01.0016.7685.62 525.63 032.31 771
    20.50430.91.0013.2676.42 456.22 829.01 798
    30.60432.21.0012.4670.02 424.42 767.31 799
    40.70432.20.9912.5664.92 423.12 770.11 798
    50.80430.01.0213.6655.12 321.12 686.11 792
    60.90430.01.0416.1634.42 187.02 607.31 785
    71.00432.21.0418.1619.62 136.02 608.11 778
    下载: 导出CSV

    表  2  燃烧室在不同当量比下的表现

    Table  2.   Performance of RDC at different equivalence ratios

    算例当量比空气流量/(g∙s−1)燃料流量/(g∙s−1)未燃燃料比例/%平均推力/N燃料比冲 /s基于反应燃料的燃料比冲/s爆轰波传播速度/(m∙s−1)
    81.05431.729.816.1684.92 345.22 795.31 798
    91.00430.928.113.2676.42 456.22 829.01 798
    100.95429.126.711.3658.92 518.32 841.91 797
    110.85427.023.9 6.3636.22 716.32 899.71 789
    120.76425.721.2 2.0591.72 848.02 907.01 771
    下载: 导出CSV

    表  3  燃烧室在不同燃料喷注压力下的表现(当量比为0.90)

    Table  3.   Performance of RDC at different fuel supply pressures (equivalence ratio of 0.90)

    算例燃料喷注压力/MPa 空气流量/(g·s−1)当量比未燃燃料比例/%平均推力/N燃料比冲 /s基于反应燃料的燃料比冲/s爆轰波传播速度/(m·s−1)
    13 0.45427.50.8911.5662.32 715.23 069.71 783
    140.50430.90.88 8.4648.02 655.52 893.81 788
    15 0.60429.30.88 7.6645.82 623.32 839.31 792
    160.70431.00.90 8.4628.72 523.82 755.71 787
    170.80430.80.91 9.7622.62 482.42 747.71 790
    180.90431.60.9211.2596.72 339.12 635.11 790
    191.00431.30.9011.7573.02 292.02 595.71 789
    下载: 导出CSV
  • [1] HEISER W H, PRATT D T. Thermodynamic cycle analysis of pulse detonation engines [J]. Journal of Propulsion and Power, 2002, 18(1): 68–76. DOI: 10.2514/2.5899.
    [2] 王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展 [J]. 实验流体力学, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.

    WANG J P, ZHOU R, WU D. Progress of continuously rotating detonation engine research [J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12–25. DOI: 10.11729/syltlx20150048.
    [3] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations [J]. Journal of Propulsion and Power, 2006, 22(6): 1204–1216. DOI: 10.2514/1.17656.
    [4] FROLOV S M, SHAMSHIN I O, AKSENOV V S, et al. Rocket engine with continuously rotating liquid-film detonation [J]. Combustion Science and Technology, 2020, 192(1): 144–165. DOI: 10.1080/00102202.2018.1557643.
    [5] KINDRACKI J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures [J]. Aerospace Science and Technology, 2015, 43: 445–453. DOI: 10.1016/j.ast.2015.04.006.
    [6] LI J M, CHANG P H, LI L, et al. Investigation of injection strategy for liquid-fuel rotating detonation engine [C]//2018 AIAA Aerospace Sciences Meeting. Kissimmee: AIAA, 2018. DOI: 10.2514/6.2018-0403.
    [7] YI T H, LOU J, TURANGAN C, et al. Propulsive performance of a continuously rotating detonation engine [J]. Journal of Propulsion and Power, 2011, 27(1): 171–181. DOI: 10.2514/1.46686.
    [8] 徐雪阳, 卓长飞, 武晓松, 等. 非预混喷注对旋转爆震发动机影响的数值研究 [J]. 航空学报, 2016, 37(4): 1184–1195. DOI: 10.7527/S1000-6893.2015.0195.

    XU X Y, ZHUO C F, WU X S, et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1184–1195. DOI: 10.7527/S1000-6893.2015.0195.
    [9] 李宝星, 翁春生. 气体与液体两相连续旋转爆轰发动机爆轰波传播特性三维数值模拟研究 [J]. 兵工学报, 2017, 38(7): 1358–1367. DOI: 10.3969/j.issn.1000-1093.2017.07.014.

    LI B X, WENG C S. Three-dimensional numerical simulation on the propagation characteristics of detonation wave in gas-liquid two-phase continuous rotating detonation engine [J]. Acta Armamentarii, 2017, 38(7): 1358–1367. DOI: 10.3969/j.issn.1000-1093.2017.07.014.
    [10] SUN B, MA H. Two-dimensional numerical study of two-phase rotating detonation wave with different injections [J]. AIP Advances, 2019, 9(11): 115307. DOI: 10.1063/1.5113881.
    [11] WANG F, WENG C S, WU Y W, et al. Numerical research on kerosene/air rotating detonation engines under different injection total temperatures [J]. Aerospace Science and Technology, 2020, 103: 105899. DOI: 10.1016/j.ast.2020.105899.
    [12] HAYASHI A K, TSUBOI N, DZIEMINSKA E. Numerical study on JP-10/air detonation and rotating detonation engine [J]. AIAA Journal, 2020, 58(12): 5078–5094. DOI: 10.2514/1.J058167.
    [13] 徐高, 翁春生, 武郁文, 等. 气相与液相两相连续旋转爆轰发动机二维数值模拟 [J]. 兵工学报, 2020, 41(S1): 21−29. DOI: 10.3969/j.issn.1000-1093.2020.S1.004.

    XU G, WENG C S, WU Y W, et al. Two-dimensional numerical simulation of gas-liquid two-phase continuous rotating detonation engine [J]. Acta Armamentarii, 41(S1): 21−29. DOI: 10.3969/j.issn.1000-1093.2020.S1.004.
    [14] SCHWER D A, KAILASANATH K. Numerical study of the effects of engine size on rotating detonation engines [C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2011. DOI: 10.2514/6.2011-581.
    [15] 武丹, 王健平. 粘性及热传导对于爆轰波的影响 [J]. 应用力学学报, 2012, 29(6): 630–635. DOI: 10.11776/cjam.29.06.D002.

    WU D, WANG J P. Influences of viscosity and thermal conductivity on detonation waves [J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 630–635. DOI: 10.11776/cjam.29.06.D002.
    [16] CHANG S C. The method of space-time conservation element and solution element: a new approach for solving the Navier-Stokes and Euler equations [J]. Journal of Computational Physics, 1995, 119(2): 295–324. DOI: 10.1006/jcph.1995.1137.
    [17] CHASE JR M W. NIST-JANAF thermochemical tables [M]. 4th ed. New York: American Chemical Society, 1998.
    [18] EIDELMAN S, BURCAT A. Numerical solution of a nonsteady blast wave propagation in two-phase (separated flow) reactive medium [J]. Journal of Computational Physics, 1981, 39(2): 456–472. DOI: 10.1016/0021-9991(81)90164-9.
    [19] WANG G, ZHU H Y, SUN Q H, et al. An improved CE/SE scheme and its application to dilute gas-particle flows [J]. Computer Physics Communications, 2011, 182(8): 1589–1601. DOI: 10.1016/j.cpc.2011.04.004.
    [20] EIDELMAN S, BURCAT A. Evolution of a detonation wave in a cloud of fuel droplets. Ⅰ: influence of igniting explosion [J]. AIAA Journal, 1980, 18(9): 1103–1109. DOI: 10.2514/3.7711.
    [21] BURCAT A, EIDELMAN S. Evolution of a detonation wave in a cloud of fuel droplets. Ⅱ: influence of fuel droplets [J]. AIAA Journal, 1980, 18(10): 1233–1236. DOI: 10.2514/3.7717.
    [22] 洪滔, 秦承森. 气体-燃料液滴两相系统爆轰的数值模拟 [J]. 爆炸与冲击, 1999, 19(4): 335–342.

    HONG T, QING C S. Numerical modeling of detonation in gas fuel droplets system [J]. Explosion and Shock Waves, 1999, 19(4): 335–342.
    [23] 严传俊, 范玮. 燃烧学 [M]. 西安: 西北工业大学出版社, 2005: 427−428.
    [24] 翁春生, 王浩. 计算内弹道学 [M]. 北京: 国防工业出版社, 2006: 290−325.
    [25] 白桥栋, 翁春生. 二维粘性CE/SE方法在两相流内弹道计算中的应用 [J]. 火炮发射与控制学报, 2009(1): 13–17. DOI: 10.3969/j.issn.1673-6524.2009.01.004.

    BAI Q D, WENG C S. Application of two dimension viscous CE/SE method in two-phase flow interior ballistic computation [J]. Journal of Gun Launch & Control, 2009(1): 13–17. DOI: 10.3969/j.issn.1673-6524.2009.01.004.
    [26] GAMEZO V N, DESBORDES D, ORAN E S. Two-dimensional reactive flow dynamics in cellular detonation waves [J]. Shock Waves, 1999, 9(1): 11–17. DOI: 10.1007/s001930050134.
    [27] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. DOI: 10.1007/s00193-008-0178-2.
    [28] LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation [J]. Computers & Fluids, 2018, 170: 261–272. DOI: 10.1016/j.compfluid.2018.05.005.
    [29] HAYASHI A K, KIMURA Y, YAMADA T, et al. Sensitivity analysis of rotating detonation engine with a detailed reaction model [C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2009. DOI: 10.2514/6.2009-633.
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  409
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 修回日期:  2021-10-28
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回