含铝炸药爆轰驱动的非线性特征线模型

段继

段继. 含铝炸药爆轰驱动的非线性特征线模型[J]. 爆炸与冲击, 2021, 41(9): 092102. doi: 10.11883/bzycj-2021-0072
引用本文: 段继. 含铝炸药爆轰驱动的非线性特征线模型[J]. 爆炸与冲击, 2021, 41(9): 092102. doi: 10.11883/bzycj-2021-0072
DUAN Ji. A nonlinear characteristic line model of the detonation process of aluminized explosives[J]. Explosion And Shock Waves, 2021, 41(9): 092102. doi: 10.11883/bzycj-2021-0072
Citation: DUAN Ji. A nonlinear characteristic line model of the detonation process of aluminized explosives[J]. Explosion And Shock Waves, 2021, 41(9): 092102. doi: 10.11883/bzycj-2021-0072

含铝炸药爆轰驱动的非线性特征线模型

doi: 10.11883/bzycj-2021-0072
详细信息
    作者简介:

    段 继(1987- ),男,博士,讲师,20170089@nuc.edu.cn

  • 中图分类号: O381; TJ55

A nonlinear characteristic line model of the detonation process of aluminized explosives

  • 摘要: 针对含铝炸药爆轰的非理想特性,提出了含铝炸药爆轰产物膨胀的局部等熵假设,建立含铝炸药爆轰驱动的非线性特征线模型,为研究含铝炸药爆轰产物的非等熵流动和膨胀做功提供了一种新的理论分析方法。设计了5、50 μm含铝炸药和含LiF炸药驱动0.5、1 mm厚金属板实验,通过激光位移干涉仪测试金属板运动的速度历程,再通过实验结果计算得到铝粉在爆轰产物中的反应度变化规律,结合含铝炸药爆轰产物的非线性特征线模型,理论计算了含铝炸药驱动金属板的速度历程。对比理论与实验结果,理论方法能够很好地描述铝粉二次反应对炸药做功能力的贡献,同时验证了含铝炸药爆轰驱动的非线性特征线模型的正确性。
  • 图  1  铝粉反应对特征线的影响示意图

    Figure  1.  Schematic diagram of the influence of aluminum powder reaction on the characteristic lines

    图  2  含铝炸药爆轰产物驱动金属板的特征线示意图

    Figure  2.  Schematic diagram of the characteristic lines of the aluminized explosive

    图  3  炸药驱动金属板实验布置示意图

    Figure  3.  Schematic diagram of the test arrangement of the explosive driven metal plate

    图  4  含铝炸药和含LiF炸药驱动0.5 mm厚铜板的测试结果

    Figure  4.  The velocity of a 0.5 mm thick copper plate driven by the aluminized explosive and LiF explosive

    图  5  含铝炸药和含LiF炸药驱动1 mm厚铜板的测试结果

    Figure  5.  The velocity of a 1 mm thick copper plate driven by the aluminized explosive and LiF explosive

    图  6  含铝炸药驱动1 mm厚金属的铝粉反应度

    Figure  6.  Reaction degree of the detonation products of aluminium powder behind the 1 mm thick copper plate

    图  7  50 μm含铝炸药驱动0.5 mm金属板的铝粉反应度

    Figure  7.  Reaction degree of the detonation products of aluminium powder behind the 0.5 mm thick copper plate

    图  8  50 μm含铝炸药和含LiF炸药驱动0.5 mm金属的实验和计算结果

    Figure  8.  The test and calculated velocities of a metal plate driven by the aluminized explosive and LiF explosive with a particle diameter of 50 μm

    图  9  不同粒度含铝炸药和含LiF炸药驱动1 mm金属板的实验和计算结果

    Figure  9.  The test and calculated velocities of a 1 mm metal plate driven by the aluminized explosives and LiF explosives with different particle diameters

    表  1  实验所用的炸药参数和铜板尺寸

    Table  1.   Parameters of the explosive and size of the copper plate

    编号炸药铝粉(或LiF)质量分数/%炸药密度/(g·cm−3铝粉直径/μm金属板尺寸/mm×mm
    1RDX/Al/黏结剂201.82 5$\varnothing $50×1
    2RDX/Al/黏结剂201.8250$\varnothing $50×1
    3RDX/LiF/黏结剂201.80$\varnothing $50×1
    4RDX/Al/黏结剂201.82 5$\varnothing $50×0.5
    5RDX/Al/黏结剂201.8250$\varnothing $50×0.5
    6RDX/LiF/黏结剂201.80$\varnothing $50×0.5
     注:炸药尺寸为$\varnothing $50 mm×50 mm,黏结剂含量占炸药总量的5%。
    下载: 导出CSV

    表  2  含铝炸药和含LiF炸药的参数

    Table  2.   Parameters of the aluminized explosives and the LIF explosive

    炸药组成铝粉质量分数/%铝粉直径/μm炸药密度/(g·cm−3炸药爆速/(km·s−1
    RDX/Al20 51.88.223
    RDX/Al20501.88.223
    RDX/LiF1.88.223
    下载: 导出CSV
  • [1] MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [J]. MRS Online Proceedings Library, 1995, 418(1): 413–420. DOI: 10.1557/PROC-418-413.
    [2] MILLER P J, GUIRGUIS R H. Experimental study and model calculations of metal combustion in Al/Ap underwater explosives [J]. MRS Online Proceedings Library, 1992, 296: 299–304. DOI: 10.1557/PROC-296-299.
    [3] MILLER P J, GUIRGUIS R H. Effects of late chemical reactions of the energy partition in non-ideal underwater explosions [J]. AIP Conference Proceedings, 1994, 309(1): 1417–1420. DOI: 10.1063/1.46246.
    [4] FROST D L, GOROSHIN S, RIPLEY R. Effect of scale on the blast wave from a metalized explosive [C] // 13th International Detonation Symposium. Norfolk: ResearchGate Publishing, 2006: 97−109.
    [5] FROST D L, GOROSHIN S, LEVINE J, et al. Critical conditions for ignition of aluminum particles in cylindrical explosive charges [J]. AIP Conference Proceedings, 2006, 845(1): 972–975. DOI: 10.1063/1.2263484.
    [6] ZHANG F, YOSHINAKA A, FROST D. Casing influence on ignition and reaction of aluminum particles in an explosive [C] // 13th International Detonation Symposium. Norfolk: ResearchGate Publishing, 2006: 1242−1251.
    [7] RIPLEY R C, DONAHUE L, DUNBAR T E, et al. Explosion performance of aluminized TNT in a chamber [C] // 19th International Symposium on Military Aspects of Blast and Shock. Calgary: SciTech Connect Press, 2006: 8.
    [8] MILNE A M. Modelling of enhanced blast and heterogeneous explosives [C] // 19th International Symposium on Military Aspects of Blast and Shock. Calgary: SciTech Connect Publishing, 2006: 44.
    [9] COOPER M A, BAER M R, SCHMITT R G, et al. Understanding enhanced blast explosives: a multiscale challenge [C] // 19th International Symposium on Military Aspects of Blast and Shock. Calgary: SciTech Connect Publishing, 2006: 46.
    [10] MASSONI J, SAUREL R, LEFRANCOIS A, et al. Modeling spherical explosions with aluminized energetic materials [J]. Shock Waves, 2006, 16(1): 75–92. DOI: 10.1007/s00193-006-0053-y.
    [11] KIM K, WILSON W, PEIRIS S, et al. Effects of particle damage during detonation of thermobarics on subsequent reactions [C] // 21st International Colloquium, on the Dynamics of Explosions and Reactive Systems. Poitiers, 2007.
    [12] KIM B, PARK J, LEE K C, et al. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine [J]. Journal of Applied Physics, 2014, 116(2): 023512. DOI: 10.1063/1.4887811.
    [13] VICTOROV S B. The effect of A12O3 phase transitions on detonation properties of aluminized explosives [C] // 12th International Detonation Symposium. San Diego: ResearchGate Publishing, 2002: 639−648.
    [14] 裴红波, 焦清介, 覃剑峰. 基于圆筒实验的RDX/Al炸药反应进程 [J]. 爆炸与冲击, 2014, 34(5): 636–640. DOI: 10.11883/1001-1455(2014)05-0636-05.

    PEI H B, JIAO Q J, QIN J F. Reaction process of aluminized RDX-based explosives based on cylinder test [J]. Explosion and Shock Waves, 2014, 34(5): 636–640. DOI: 10.11883/1001-1455(2014)05-0636-05.
    [15] 陈朗, 张寿齐, 赵玉华. 不同铝粉尺寸含铝炸药加速金属能力的研究 [J]. 爆炸与冲击, 1999, 19(3): 250–255.

    CHEN L, ZHANG S Q, ZHAO Y H. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter [J]. Explosion and Shock Waves, 1999, 19(3): 250–255.
    [16] ZHANG F, THIBAULT P A, LINK R. Shock interaction with solid particles in condensed matter and related momentum transfer [J]. The Royal Society, 2003, 459(2031): 705–726. DOI: 10.1098/rspa.2002.1045.
    [17] BALAKRISHNAN K, KUHL A L, BELL J B, et al. Ignition of aluminum particle clouds behind reflected shock waves [C] // 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems. Irvine: Research Gate Publishing, 2011: 329−336.
    [18] MILLER P J. Reaction kinetics of aluminum particles in detonation gases [C] // JANNAF PSHS. San Diego, 1994, 615: 413.
    [19] 陈朗, 龙新平. 含铝炸药爆轰[M]. 北京: 国防工业出版社, 2004: 93.

    CHEN L, LONG X P. The detonation of aluminized explosive [M]. Beijing: National Defense Industry Press, 2004: 93.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  364
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-08-19
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回