基于分子动力学模拟的单晶硅冲击压缩相变研究

刘梦婷 李旺辉 奉兰西 张晓晴 姚小虎

刘梦婷, 李旺辉, 奉兰西, 张晓晴, 姚小虎. 基于分子动力学模拟的单晶硅冲击压缩相变研究[J]. 爆炸与冲击, 2022, 42(1): 013102. doi: 10.11883/bzycj-2021-0074
引用本文: 刘梦婷, 李旺辉, 奉兰西, 张晓晴, 姚小虎. 基于分子动力学模拟的单晶硅冲击压缩相变研究[J]. 爆炸与冲击, 2022, 42(1): 013102. doi: 10.11883/bzycj-2021-0074
LIU Mengting, LI Wanghui, FENG Lanxi, ZHANG Xiaoqing, YAO Xiaohu. Study on shock compression phase transition of single crystal siliconbased on molecular dynamics simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013102. doi: 10.11883/bzycj-2021-0074
Citation: LIU Mengting, LI Wanghui, FENG Lanxi, ZHANG Xiaoqing, YAO Xiaohu. Study on shock compression phase transition of single crystal siliconbased on molecular dynamics simulation[J]. Explosion And Shock Waves, 2022, 42(1): 013102. doi: 10.11883/bzycj-2021-0074

基于分子动力学模拟的单晶硅冲击压缩相变研究

doi: 10.11883/bzycj-2021-0074
基金项目: 国家自然科学基金(11925203,11972163,12002127)
详细信息
    作者简介:

    刘梦婷(1996- ),女,硕士研究生,201820106604@mail.scut.edu.cn

    通讯作者:

    李旺辉(1989- ),男,博士,助理研究员,liwanghui@scut.edu.cn

  • 中图分类号: O347.3; O521.23

Study on shock compression phase transition of single crystal siliconbased on molecular dynamics simulation

  • 摘要: 晶体硅具有复杂的相变机制,在相图研究中受到广泛关注,其在动载荷下的变形机制是当前研究热点。为揭示晶体硅在强动加载下的变形和相变行为特征,基于分子动力学方法,采用平板冲击加载方式,模拟研究了单晶硅在初始环境温度为300 K时分别沿[001]、[110]和[111]晶向的不同强度下的冲击压缩行为,冲击粒子速度为0.3~3.2 km/s。研究发现,随着冲击粒子速度的增加,单晶硅剪切应力在逐渐增加后由于结构相变发生急剧下降,相变阈值和相变机制均呈现各向异性。其中,沿[001]晶向冲击压缩下观察到多种固-固相变以及固-液相变,并观察到与最新文献的实验高度一致的固-液共存现象。研究结果可为动加载下晶体硅的相变研究提供纳米尺度的结果支撑。
  • 图  1  分子动力学模拟中单晶硅的冲击压缩示意图

    Figure  1.  Schematic of shock compression of single crystal Si in molecular dynamic simulations

    图  2  不同实验[13,20,32-33]与模拟中晶体硅的冲击压缩Hugoniot应力和体积变化的关系

    Figure  2.  Shock Hugoniot stress as a function of volume change in various experiments[13,20,32-33] and simulations of Si crystals

    图  3  冲击Hugoniot状态的剪切应力(τ)与粒子速度(up) 曲线

    Figure  3.  Shock Hugoniot shear stress as a function of particle velocity

    图  4  单晶硅中分别沿[001]、[110]和[111]晶向的冲击波剖面

    Figure  4.  Shock profiles in single crystal Si along [001], [110] and [111] crystal orientation

    图  5  单晶硅沿[001]、[110]、[111]晶向分别在1.4、1.8、1.5 km/s冲击压缩下的可视化

    Figure  5.  Visualizations of single crystal Si in [001], [110] and [111] crystal orientations with shock particle velocities of 1.4, 1.8, 1.5 km/s

    图  6  不同冲击粒子速度下[001]单晶硅的结构演化

    Figure  6.  Structural evolutions of single crystal Si in [001] orientation at various shock particle velocities

    图  7  对代表性局部区域的键角分析和径向分布函数分析

    Figure  7.  Bond-angle and radial distribution functions analysis for representative local regions

    图  8  不同冲击粒子速度下[110]单晶硅的结构演化

    Figure  8.  Structural evolutions of single crystal Si in [110] orientation at various shock particle velocities

    图  9  对图8代表性局部区域的键角分析和径向分布函数分析

    Figure  9.  Bond-angle and radial distribution functions analysis for representative local regions

    图  10  不同冲击粒子速度下[111]单晶硅的结构演化

    Figure  10.  Structural evolutions of single crystal Si in [111] orientation at various shock particle velocities

    图  11  对代表性局部区域的键角分析和径向分布函数分析

    Figure  11.  Bond-angle and radial distribution functions analysis for representative local regions

    表  1  单晶硅计算模型详细参数

    Table  1.   Parameters of single crystal Si sample for MD simulation

    加载晶向xyz模型原子数
    晶向 模型尺寸/nm晶向 模型尺寸/nm晶向 模型尺寸/nm
    [001][100]16.3[010]16.2[001]217.0~2.84×106
    [110][$\bar{1}10 $]16.3[001]16.2[110]217.0~2.84×106
    [111][$\bar{1}\bar{1}2 $]16.0[$1\bar{1} 0$]16.2[111]214.8~2.76×106
    下载: 导出CSV
  • [1] EL-KAREH B, HUTTER L N. Review of single-crystal silicon properties [M] // EL-KAREH B, HUTTER L N. Silicon Analog Components. Cham: Springer, 2020: 25–63. DOI: 10.1007/978-3-030-15085-3_2.
    [2] JAMIESON J C. Crystal structures at high pressures of metallic modifications of silicon and germanium [J]. Science, 1963, 139(3556): 762–764. DOI: 10.1126/science.139.3556.762.
    [3] MCMAHON M I, NELMES R J. New high-pressure phase of Si [J]. Physical Review B, 1993, 47(13): 8337–8340. DOI: 10.1103/PhysRevB.47.8337.
    [4] MCMAHON M I, NELMES R J, WRIGHT N G, et al. Pressure dependence of the Imma phase of silicon [J]. Physical Review B, 1994, 50(2): 739–743. DOI: 10.1103/PhysRevB.50.739.
    [5] OLIJNYK H, SIKKA S K, HOLZAPFEL W B. Structural phase transitions in Si and Ge under pressures up to 50 GPa [J]. Physics Letters A, 1984, 103(3): 137–140. DOI: 10.1016/0375-9601(84)90219-6.
    [6] DUCLOS S J, VOHRA Y K, RUOFF A L. Hcp to fcc transition in silicon at 78 GPa and studies to 100 GPa [J]. Physical Review Letters, 1987, 58(8): 775–777. DOI: 10.1103/PhysRevLett.58.775.
    [7] HANFLAND M, SCHWARZ U, SYASSEN K, et al. Crystal structure of the high-pressure phase silicon Ⅵ [J]. Physical Review Letters, 1999, 82(6): 1197–1200. DOI: 10.1103/PhysRevLett.82.1197.
    [8] WENTORF R H JR, KASPER J S. Two new forms of silicon [J]. Science, 1963, 139(3552): 338–339. DOI: 10.1126/science.139.3552.338-a.
    [9] PILTZ R O, MACLEAN J R, CLARK S J, et al. Structure and properties of silicon Ⅻ: a complex tetrahedrally bonded phase [J]. Physical Review B, 1995, 52(6): 4072–4085. DOI: 10.1103/PhysRevB.52.4072.
    [10] MUJICA A, RUBIO A, MUÑOZ A, et al. High-pressure phases of group-Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. DOI: 10.1103/RevModPhys.75.863.
    [11] GILEV S D, TRUBACHEV A M. Metallization of monocrystalline silicon under shock compression [J]. Physica Status Solidi (B), 1999, 211(1): 379–383. DOI: 10.1002/(SICI)1521-3951(199901)211:1<379::AID-PSSB379>3.0.CO;2-4.
    [12] LOVERIDGE-SMITH A, ALLEN A, BELAK J, et al. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales [J]. Physical Review Letters, 2001, 86(11): 2349–2352. DOI: 10.1103/PhysRevLett.86.2349.
    [13] TURNEAURE S J, GUPTA Y M. Inelastic deformation and phase transformation of shock compressed silicon single crystals [J]. Applied Physics Letters, 2007, 91(20): 201913. DOI: 10.1063/1.2814067.
    [14] ZHAO S, HAHN E N, KAD B, et al. Amorphization and nanocrystallization of silicon under shock compression [J]. Acta Materialia, 2016, 103: 519–533. DOI: 10.1016/j.actamat.2015.09.022.
    [15] SMITH R F, BOLME C A, ERSKINE D J, et al. Heterogeneous flow and brittle failure in shock-compressed silicon [J]. Journal of Applied Physics, 2013, 114(13): 133504. DOI: 10.1063/1.4820927.
    [16] LIU Y X, WU X Q, WANG X, et al. Deformation behavior of single crystal silicon induced by laser shock peening [C]// Proceedings of SPIE 8796, 2nd International Symposium on Laser Interaction with Matter (LIMIS 2012). Xi’an, 2013: 87962M. DOI: 10.1117/12.2011314.
    [17] KISHIMURA H, MATSUMOTO H. Effect of phase transition in shock-recovered silicon [J]. Journal of Applied Physics, 2008, 103(2): 023505. DOI: 10.1063/1.2830805.
    [18] TURNEAURE S J, SHARMA S M, GUPTA Y M. Nanosecond melting and recrystallization in shock-compressed silicon [J]. Physical Review Letters, 2018, 121(13): 135701. DOI: 10.1103/PhysRevLett.121.135701.
    [19] RENGANATHAN P, TURNEAURE S J, SHARMA S M, et al. Structural transformations including melting and recrystallization during shock compression and release of germanium up to 45 GPa [J]. Physical Review B, 2019, 99(13): 134101. DOI: 10.1103/PhysRevB.99.134101.
    [20] MCBRIDE E E, KRYGIER A, EHNES A, et al. Phase transition lowering in dynamically compressed silicon [J]. Nature Physics, 2019, 15(1): 89–94. DOI: 10.1038/s41567-018-0290-x.
    [21] PAUL R, HU S X, KARASIEV V V. Anharmonic and anomalous trends in the high-pressure phase diagram of silicon [J]. Physical Review Letters, 2019, 122(12): 125701. DOI: 10.1103/PhysRevLett.122.125701.
    [22] DOMNICH V V. Phase transformations in silicon induced by contact loading [D]. Chicago: University of Illinois at Chicago, 2002.
    [23] SWIFT D C, ACKLAND G J, HAUER A, et al. First-principles equations of state for simulations of shock waves in silicon [J]. Physical Review B, 2001, 64(21): 214107. DOI: 10.1103/PhysRevB.64.214107.
    [24] DEMKOWICZ M J, ARGON A S. Liquidlike atomic environments act as plasticity carriers in amorphous silicon [J]. Physical Review B, 2005, 72(24): 245205. DOI: 10.1103/PhysRevB.72.245205.
    [25] KUMAGAI T, IZUMI S, HARA S, et al. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation [J]. Computational Materials Science, 2007, 39(2): 457–464. DOI: 10.1016/j.commatsci.2006.07.013.
    [26] HIGGINBOTHAM A, STUBLEY P G, COMLEY A J, et al. Inelastic response of silicon to shock compression [J]. Scientific Reports, 2016, 6: 24211. DOI: 10.1038/srep24211.
    [27] MOGNI G, HIGGINBOTHAM A, GAÁL-NAGY K, et al. Molecular dynamics simulations of shock-compressed single-crystal silicon [J]. Physical Review B, 2014, 89(6): 064104. DOI: 10.1103/PhysRevB.89.064104.
    [28] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995.1039.
    [29] ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Physical Review B, 2005, 71(3): 035211. DOI: 10.1103/PhysRevB.71.035211.
    [30] THOMPSON A P, PLIMPTON S J, MATTSON W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. The Journal of Chemical Physics, 2009, 131(15): 154107. DOI: 10.1063/1.3245303.
    [31] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool [J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012.
    [32] GOTO T, SATO T, SYONO Y. Reduction of shear strength and phase-transition in shock-loaded silicon [J]. Japanese Journal of Applied Physics, 1982, 21(6A): L369–L371. DOI: 10.1143/jjap.21.l369.
    [33] GUST W H, ROYCE E B. Axial yield strengths and two successive phase transition stresses for crystalline silicon [J]. Journal of Applied Physics, 1971, 42(5): 1897–1905. DOI: 10.1063/1.1660465.
    [34] LI W H, HAHN E N, YAO X H, et al. Shock induced damage and fracture in SiC at elevated temperature and high strain rate [J]. Acta Materialia, 2019, 167: 51–70. DOI: 10.1016/j.actamat.2018.12.035.
    [35] LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression [J]. International Journal of Plasticity, 2021, 138: 102923. DOI: 10.1016/j.ijplas.2020.102923.
    [36] KADAU K, GERMANN T C, LOMDAHL P S, et al. Atomistic simulations of shock-induced phase transitions [J]. AIP Conference Proceedings, 2004, 706(1): 229–234. DOI: 10.1063/1.1780223.
    [37] LANG JR J M, GUPTA Y M. Strength and elastic deformation of natural and synthetic diamond crystals shock compressed along [100] [J]. Journal of Applied Physics, 2010, 107(11): 113538. DOI: 10.1063/1.3448027.
    [38] OLEYNIK I I, ZYBIN S V, ELERT M L, et al. Nanoscale molecular dynamics simulaton of shock compression of silicon [J]. AIP Conference Proceedings, 2006, 845(1): 413–416. DOI: 10.1063/1.2263349.
    [39] STUBLEY P G, HIGGINBOTHAM A, WARK J S. Simulations of the inelastic response of silicon to shock compression [J]. Computational Materials Science, 2017, 128: 121–126. DOI: 10.1016/j.commatsci.2016.11.006.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  257
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-08-08
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回