不同分支坑道分布形式及分布位置对油气爆炸超压特性的影响

吴婧斯 张培理 王冬 刘慧姝 肖俊

吴婧斯, 张培理, 王冬, 刘慧姝, 肖俊. 不同分支坑道分布形式及分布位置对油气爆炸超压特性的影响[J]. 爆炸与冲击, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078
引用本文: 吴婧斯, 张培理, 王冬, 刘慧姝, 肖俊. 不同分支坑道分布形式及分布位置对油气爆炸超压特性的影响[J]. 爆炸与冲击, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078
WU Jingsi, ZHANG Peili, WANG Dong, LIU Huishu, XIAO Jun. Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels[J]. Explosion And Shock Waves, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078
Citation: WU Jingsi, ZHANG Peili, WANG Dong, LIU Huishu, XIAO Jun. Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels[J]. Explosion And Shock Waves, 2021, 41(11): 115401. doi: 10.11883/bzycj-2021-0078

不同分支坑道分布形式及分布位置对油气爆炸超压特性的影响

doi: 10.11883/bzycj-2021-0078
基金项目: 陆军勤务学院青年基金(LQ-QN-202014);国家自然科学基金(51704301);国防科技项目基金(2019-JCJQ-JJ-024);重庆市自然科学基金(cstc2019jcyj-msxmX0268)
详细信息
    作者简介:

    吴婧斯(1985- ),女,硕士,助教,20004758@qq.com

    通讯作者:

    张培理(1985- ),男,博士,副教授,zpl6123@163.com

  • 中图分类号: O389; X932

Effects of distribution form and location of different branch tunnels on overpressure characteristics of ventedgasoline-air mixture explosion in closed vessels

  • 摘要: 为探索洞库支坑道不同分布形式及分布位置对坑道内油气爆炸超压特性的影响,在控制容积、初始油气浓度以及点火能不变的情况下,开展了不同支坑道分布形式及分布位置条件下油气的爆炸超压特性实验,重点对最大超压、最大超压时间、超压上升速率、爆炸强度指数等主要超压特性参数进行了分析。结果表明:密闭容器内坑道的分布形式及分布位置对容器内油气爆炸超压特性有显著影响。相对布置形式下最大超压、最大超压上升速率、爆炸强度指数均小于一字排开和交错布置,达到最大超压和最大超压上升速率的时间也有所延后。3种不同分支坑道分布位置下,最大爆炸超压上升速率和爆炸强度指数由大到小依次为:远离点火端、靠近点火端、沿主坑道均匀分布。分支坑道距离点火端越远,爆炸强度指数越大, 分支坑道距离点火端越近,达到最大爆炸超压上升速率的时间越提前。
  • 图  1  实验系统布置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  油气雾化循环配气系统

    Figure  2.  Gasoline atomization circulation system

    图  3  分支坑道分布形式和分布位置设计图

    Figure  3.  Design for distribution form and location of branch tunnels

    图  4  实验概况图

    Figure  4.  Images of experimental devices

    图  5  不同分布形式下超压历程曲线

    Figure  5.  Overpressure history curves of different distribution forms

    图  6  不同分布形式下超压上升速率历程曲线

    Figure  6.  Overpressure rising rate history curves of different distribution forms

    图  7  不同分布形式爆炸超压特性特征值

    Figure  7.  Explosion overpressure characteristic values of different distribution forms

    图  8  不同分布位置下超压历程曲线

    Figure  8.  Overpressure history curves of different distribution locations

    图  9  不同分布位置下超压上升速率历程曲线

    Figure  9.  Overpressure rise rate time history curves obtained from different distribution locations

    图  10  不同分布位置爆炸超压特性特征值

    Figure  10.  Explosion overpressure characteristic values of different distribution locations

    表  1  相同初始油气浓度条件下不同分布形式下的爆炸超压特性

    Table  1.   Explosion overpressure characteristics of different distribution forms under the same initial fuel concentration

    分布形式最大超压/
    kPa
    最大超压时间/
    ms
    平均超压上升速率/
    (MPa∙s−1
    最大超压上升速率/
    (MPa∙s−1
    最大超压上升速率时间/
    ms
    爆炸强度指数KG
    一字排开519.12 83.196.2422.0268.1613.68
    交错布置521.85 82.956.2923.0768.1614.34
    相对布置455.25108.894.1814.7988.53 9.19
    下载: 导出CSV

    表  2  相同初始油气浓度条件下不同分布位置下的爆炸超压特性

    Table  2.   Explosion overpressure characteristics of different distribution locations under the same initial fuel concentration

    分布位置最大超压/
    kPa
    最大超压时间/
    ms
    平均超压上升速率/
    (MPa∙s−1
    最大超压上升速率/
    (MPa∙s−1
    最大超压上升速率时间/
    ms
    爆炸强度指数KG
    靠近点火端454.7 86.55.317.6 50.910.9
    沿主坑道均匀分布453.3109.14.214.7 89.1 9.1
    远离点火端498.1120.44.121.5109.413.4
    下载: 导出CSV
  • [1] ZHU Y, QIAN X M, LIU Z Y, et al. Analysis and assessment of the Qingdao crude oil vapor explosion accident: lessons learnt [J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 289–303. DOI: 10.1016/j.jlp.2015.01.004.
    [2] 胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.

    HU H W, SONG P, ZHAO S X, et al. Progress in explosion in confined space [J]. Chinese Journal of Energetic Materials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.
    [3] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [4] 刘乐海, 毕凤荣, 于洋洋, 等. 填充密度对球形非金属隔片抑制丙烷爆炸性能的影响 [J]. 含能材料, 2021, 29(9): 840–847. DOI: 10.11943/CJEM2020217.

    LIU L H, BI F R, YU Y Y, et al. Influence of packed densities of nonmetallic spherical spacers on propane explosion suppression [J]. Chinese Journal of Energetic Materials, 2021, 29(9): 840–847. DOI: 10.11943/CJEM2020217.
    [5] 王志荣, 孙培培, 唐振华, 等. 密闭容器甲烷-空气混合物爆炸的尺寸效应 [J]. 中国安全科学学报, 2021, 31(1): 60–66. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.009.

    WANG Z R, SUN P P, TANG Z H, et al. Size effect of methane-air mixture explosion in closed vessel [J]. China Safety Science Journal, 2021, 31(1): 60–66. DOI: 10.16265/j.cnki.issn1003-3033.2021.01.009.
    [6] 程关兵, 王国大, 黄燕晓. 氢气爆燃转爆轰特性试验研究 [J]. 中国安全科学学报, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.

    CHENG G B, WANG G D, HUANG Y X. Experimental study on characteristics of hydrogen deflagration to detonation transition [J]. China Safety Science Journal, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.
    [7] 熊小鹤, 丁艳军, 操晓波, 等. 基于激波管装置的乙烯氧化实验研究与动力学机理分析 [J]. 物理化学学报, 2016, 32(6): 1416–1423. DOI: 10.3866/PKU.WHXB2016032501.

    XIONG X H, DING Y J, CAO X B, et al. Ethylene oxidation experimental study and kinetic mechanism analysis based on shock tube [J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1416–1423. DOI: 10.3866/PKU.WHXB2016032501.
    [8] BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004.
    [9] SULAIMAN S Z, KASMANI R M, KIAH M H M, et al. The influence of 90 degree bends in closed pipe system on the explosion properties using hydrogen-enriched methane [J]. Chemical Engineering Transactions, 2014, 36: 271–276. DOI: 10.3303/CET1436046.
    [10] 王海燕, 王静云, 葛会芳, 等. 瓦斯爆炸波在转弯巷道内传播特征的模拟 [J]. 安全, 2015, 36(4): 31–33, 37. DOI: 10.3969/j.issn.1002-3631.2015.04.010.

    WANG H Y, WANG J Y, GE H F, et al. Simulation of propagation characteristics of gas explosion wave in turning roadway [J]. Safety & Security, 2015, 36(4): 31–33, 37. DOI: 10.3969/j.issn.1002-3631.2015.04.010.
    [11] 黄强, 穆朝民, 王亚军, 等. 瓦斯体积分数对90°弯管泄爆特性的影响 [J]. 中国安全科学学报, 2020, 30(11): 101–107. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.015.

    HUANG Q, MU C M, WANG Y J, et al. Effects of gas volume fraction on venting features of 90° elbows after explosion [J]. China Safety Science Journal, 2020, 30(11): 101–107. DOI: 10.16265/j.cnki.issn1003-3033.2020.11.015.
    [12] 李国庆, 杜扬, 吴松林, 等. T型分支坑道对油气爆炸传播特性的影响 [J]. 后勤工程学院学报, 2014, 30(5): 32–35,75. DOI: 10.3969/j.issn.1672-7843.2014.05.007.

    LI G Q, DU Y, WU S L, et al. Effect of T-branch tunnel on the transmission characteristics of gasoline-air mixture explosion [J]. Journal of Logistical Engineering University, 2014, 30(5): 32–35,75. DOI: 10.3969/j.issn.1672-7843.2014.05.007.
    [13] LIBERMAN M A, IVANOV M F, KIVERIN A D. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames [J]. Journal of Loss Prevention in the Process Industries, 2015, 38: 176–186. DOI: 10.1016/j.jlp.2015.09.006.
    [14] 杜扬, 李国庆, 李阳超, 等. T型分支管道对油气爆炸压力的影响 [J]. 爆炸与冲击, 2017, 37(2): 323–331. DOI: 10.11883/1001-1455(2017)02-0323-09.

    DU Y, LI G Q, LI Y C, et al. Effects of a T-shaped branch pipe on overpressure of gasoline-air mixture explosion [J]. Explosion and Shock Waves, 2017, 37(2): 323–331. DOI: 10.11883/1001-1455(2017)02-0323-09.
    [15] 杜扬, 李蒙, 李国庆, 等. 含双侧分支结构受限空间油气泄压爆炸超压特性与火焰行为 [J]. 化工进展, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.

    DU Y, LI M, LI G Q, et al. Effects of bilateral branches structure on characteristics of gasoline-air mixtures explosion overpressure and flame behavior in a semi-confined space [J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2557–2564. DOI: 10.16085/j.issn.1000-6613.2017-2522.
    [16] NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059.
    [17] 杨志, 周凯元, 谢立军, 等. Z型管道中气体火焰传播规律的实验研究 [J]. 火灾科学, 2006, 15(3): 111–115. DOI: 10.3969/j.issn.1004-5309.2006.03.001.

    YANG Z, ZHOU K Y, XIE L J, et al. Experimental study of flame transition in the “Z” type tube [J]. Fire Safety Science, 2006, 15(3): 111–115. DOI: 10.3969/j.issn.1004-5309.2006.03.001.
    [18] 王汉良, 周凯元, 夏昌敬. 气体爆轰波在弯曲管道中传播特性的实验研究 [J]. 火灾科学, 2001, 10(4): 209–212. DOI: 10.3969/j.issn.1004-5309.2001.04.004.

    WANG H L, ZHOU K Y, XIA C J. Experimental studies of the propagation of detonation waves through the bends [J]. Fire Safety Science, 2001, 10(4): 209–212. DOI: 10.3969/j.issn.1004-5309.2001.04.004.
    [19] ZHAI C, LIN B Q, YE Q, et al. Influence of geometry shape on gas explosion propagation laws in bend roadways [J]. Procedia Earth and Planetary Science, 2009, 1(1): 193–198. DOI: 10.1016/j.proeps.2009.09.032.
    [20] 董铭鑫, 赵东风, 尹法波, 等. 通风管网中瓦斯爆炸火焰波传播特性三维数值模拟 [J]. 煤炭学报, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173.

    DONG M X, ZHAO D F, YIN F B, et al. Flame propagation characteristics of gas explosion in 3D ventilation pipe network by numerical simulation [J]. Journal of China Coal Society, 2020, 45(S1): 291–299. DOI: 10.13225/j.cnki.jccs.2019.1173.
    [21] GIURCAN V, RAZUS D, MITU M, et al. Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 65–71. DOI: 10.1016/j.jlp.2015.01.025.
    [22] 刘文辉, 蒋新生, 何标, 等. 氧气体积分数对油气爆炸特性的影响 [J]. 后勤工程学院学报, 2014, 30(5): 47–52. DOI: 10.3969/j.issn.1672-7843.2014.05.010.

    LIU W H, JIANG X S, HE B, et al. Influence of oxygen volume fraction on explosion characteristics of gasoline-air mixture [J]. Journal of Logistical Engineering University, 2014, 30(5): 47–52. DOI: 10.3969/j.issn.1672-7843.2014.05.010.
    [23] RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel [J]. Journal of Hazardous Materials, 2011, 190(1–3): 891–896. DOI: 10.1016/j.jhazmat.2011.04.018.
    [24] 王建, 王冬, 张培理, 等. 三种多分支结构坑道内油气爆炸过程的大涡模拟 [J]. 当代化工, 2019, 48(8): 1811–1815. DOI: 10.3969/j.issn.1671-0460.2019.08.044.

    WANG J, WANG D, ZHANG P L, et al. Large eddy simulation of the explosion process of oil and gas in three kinds of tunnels with multi-branched structure [J]. Contemporary Chemical Industry, 2019, 48(8): 1811–1815. DOI: 10.3969/j.issn.1671-0460.2019.08.044.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  297
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回