Peridynamic damage simulation of ship composite structures subjected to combined action of shock wave and fragments
-
摘要: 采用一种新兴的无网格法——近场动力学理论,模拟复合材料结构在冲击波-破片群联合作用下的损伤情况。根据复合材料结构承受的载荷特性,分析冲击波-破片群联合作用下层合板及加筋板结构的损伤模式,考虑载荷作用次序等因素对于联合作用毁伤能力的影响规律。结果表明:联合作用对复合材料结构的损伤程度主要与冲击波强度、破片群侵彻能力、作用次序有关,主要损伤模式为分层失效、基体损伤、剪切损伤以及结构大变形;对于层合板而言,在冲击波先作用的工况下,结构损伤程度更高,损伤范围更大;对于加筋板而言,由于加筋板的筋条能显著降低冲击波作用,进而降低冲击波对破片群侵彻能力的增强效应,最终影响联合作用的毁伤能力,因而在破片群先作用的工况下反而损伤更严重。Abstract: In recent years, as a hot area of computational mechanics, an emerging meshless method, namely peridynamic, has attracted the attention of researchers. The peridynamic theory attempts to unify the mathematical models of continuum, cracks, and particles into one framework, so it is essentially a mechanical model independent of the scope of continuum mechanics. The governing equation of peridynamic adopts the spatial integral form, and the continuity of the field function is no longer required. Compared with the traditional methods based on continuum mechanics, the peridynamic method has a great advantage in dealing with discontinuity problems, such as crack propagation and other fracture problems. In this paper, the peridynamic method is adopted to study the damage characteristics of composite structure under the combined action of shock wave and fragment group. The damage mode of the laminated plate and reinforced plate structures are analyzed, and the influence of the load sequence and other factors on the damage ability is considered. The results show that the damage degree of the composite structure under the combined action is mainly related to the shock wave strength, the penetration ability of the fragment group, and the order of action. The main damage modes are delamination failure, matrix damage, shear damage and large structural deformation. When the shock wave acts first, the structural damage is serious and the damage range is larger. The ribs of the reinforced plate significantly reduce the impact of the shock wave action, and then affect the joint action, hence its deformation, displacement and structural damage are greatly reduced compared to the laminates, the damage is more serious when fragment group acting first.
-
Key words:
- composites /
- peridynamics /
- combined damage /
- shock wave /
- fragment /
- penetration
-
表 1 靶板基本性能参数
Table 1. Basic performance parameters of the target
参数 数值 单位 $ {E_1} $ 159.96 GPa $ {E_2} $ 8.97 GPa $ {E_3} $ 8.97 GPa ${\nu _{12}}$ 0.33 ${\nu _{13}}$ 0.33 ${\nu _{23}}$ 0.5 $ {G_{12}} $ 4.05 GPa $ {G_{13}} $ 4.05 GPa $ {G_{23}} $ 2.3 GPa $ \rho $ 1 800 kg/m3 表 2 计算工况参数
Table 2. Working condition parameters
工况 S/mm 作用次序 v/(m∙s−1) L/m W/kg 1 0 冲击波先 800 2.0 8.0 2 50 冲击波先 800 2.0 8.0 3 100 冲击波先 800 2.0 8.0 4 500 冲击波先 800 2.0 8.0 5 0 破片群先 800 2.0 8.0 6 50 破片群先 800 2.0 8.0 7 100 破片群先 800 2.0 8.0 8 500 破片群先 800 2.0 8.0 表 3 冲击波先于破片群作用工况下,层合板的损伤情况
Table 3. The damage in the laminates when the shock wave precedes the fragment group
损伤 工况1 工况2 工况3 工况4 基体损伤 纤维断裂 层间损伤 剪切损伤 表 4 破片群先于冲击波作用工况下,层合板的损伤情况
Table 4. The damage in the laminates when the fragment group precedes the shock wave
损伤 工况5 工况6 工况7 工况8 基体损伤 纤维断裂 层间损伤 剪切损伤 表 5 计算工况参数
Table 5. Working condition parameters
工况 L/m W/kg φ/(kg1/2·m−1) S/mm v/(m∙s−1) 1 2.0 4 1.000 50 800 2 2.0 8 1.414 50 800 3 2.0 16 2.000 50 800 4 1.5 4 1.333 50 800 5 1.2 4 1.667 50 800 6 1.0 4 2.000 50 800 表 6 冲击波先于破片群作用工况下层合板的损伤情况
Table 6. The damage in the laminates when the shock wave precedes the fragment group
工况 基体损伤 纤维断裂 层间损伤 剪切损伤 工况1 工况2 工况3 工况4 工况5 工况6 表 7 破片群先于冲击波作用工况下层合板的损伤情况
Table 7. The damage of the laminates when the fragment group precedes the shock wave
工况 基体损伤 纤维断裂 层间损伤 剪切损伤 工况1 工况2 工况3 工况4 工况5 工况6 表 8 冲击波先于破片群工况下,加筋板的损伤情况
Table 8. The damage in the reinforced plates when the shock wave precedes the fragment group
损伤 单根加筋 平行双加筋 十字加筋 双十字加筋 基体损伤 剪切损伤 表 9 破片群先于冲击波作用工况下,加筋板的损伤情况
Table 9. The damage in of the reinforced plates when the fragment group precedes the shock wave
损伤 单根加筋 平行双加筋 十字加筋 双十字加筋 基体损伤 剪切损伤 -
[1] LI S, THOULESS M D, WAAS A M, et al. Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite [J]. Composites Science and Technology, 2005, 65(3/4): 537–549. DOI: 10.1016/j.compscitech.2004.08.004. [2] PINEDA E J, WAAS A M, BEDNARCYK B A, et al. Progressive damage and failure modeling in notched laminated fiber reinforced composites [J]. International Journal of Fracture, 2009, 158(2): 125–143. DOI: 10.1007/s10704-009-9370-3. [3] HALLETT S R, WISNOM M R. Experimental investigation of progressive damage and the effect of layup in notched tensile tests [J]. Journal of Composite Materials, 2006, 40(2): 119–141. DOI: 10.1177/0021998305053504. [4] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. DOI: 10.1016/S0022-5096(99)00029-0. [5] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用 [J]. 力学进展, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.HUANG D, ZHANG Q, QIAO P Z, et al. A review on peridynamics (PD) method and its applications [J]. Advances in Mechanics, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002. [6] 刘刚. 破片和冲击波对直升机结构联合作用的数值模拟研究 [D]. 南京: 南京理工大学, 2013: 59−60. [7] 段新峰, 程远胜, 张攀, 等. 冲击波和破片联合作用下Ⅰ型夹层板毁伤仿真 [J]. 中国舰船研究, 2015, 10(6): 45–59. DOI: 10.3969/j.issn.1673-3185.2015.06.008.DUAN X F, CHENG Y S, ZHANG P, et al. Numerical analysis of the damage on Ⅰ-core sandwich panels subjected to combined blast and fragment loading [J]. Chinese Journal of Ship Research, 2015, 10(6): 45–59. DOI: 10.3969/j.issn.1673-3185.2015.06.008. [8] 赵天佑. 基于近场动力学的舰船复合材料结构冲击损伤研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019.ZHAO T Y. Study on impact damage of composite structures based on peridynamics [D]. Harbin: Harbin Engineering University, 2019. [9] 陈志鹏, 马福临, 杨娜娜, 等. 破片群作用下复合材料层合板近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081.CHEN Z P, MA F L, YANG N N, et al. Peridynamic damage simulation of composite structures subjected to fragment clusters [J]. Explosion and Shock Waves, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081. [10] 李典, 侯海量, 朱锡, 等. 破片群侵彻纤维增强层合板破坏机理及穿甲能力等效方法 [J]. 兵工学报, 2018, 39(4): 707–716. DOI: 10.3969/j.issn.1000-1093.2018.04.010.LI D, HOU H L, ZHU X, et al. Study of the failure mechanism of fiber reinforced composite laminates subjected to fragment cluster penetration and the equivalent method for armor piercing ability of fragment cluster [J]. Acta Armamentarii, 2018, 39(4): 707–716. DOI: 10.3969/j.issn.1000-1093.2018.04.010. [11] 陈俊丹, 王德禹. 含裂纹损伤箱型梁剩余扭转极限强度研究 [J]. 舰船科学技术, 2016, 38(4): 12–16. DOI: 10.3404/j.issn.1672-7619.2016.04.003.CHEN J D, WANG D Y. Research on the residual ultimate strength of cracked box girder subjected to torsional load [J]. Ship Science and Technology, 2016, 38(4): 12–16. DOI: 10.3404/j.issn.1672-7619.2016.04.003. [12] 杨光松. 损伤力学与复合材料损伤 [M]. 北京: 国防工业出版社, 1995. [13] 亨利奇. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987. [14] 姚熊亮. 舰船结构振动冲击与噪声 [M]. 北京: 国防工业出版社, 2007: 144−146.