锥形长药柱水下爆炸冲击波参数计算方法

徐维铮 黄超 张磐 黄宇 曾繁 王星 郑贤旭

徐维铮, 黄超, 张磐, 黄宇, 曾繁, 王星, 郑贤旭. 锥形长药柱水下爆炸冲击波参数计算方法[J]. 爆炸与冲击, 2022, 42(1): 014203. doi: 10.11883/bzycj-2021-0095
引用本文: 徐维铮, 黄超, 张磐, 黄宇, 曾繁, 王星, 郑贤旭. 锥形长药柱水下爆炸冲击波参数计算方法[J]. 爆炸与冲击, 2022, 42(1): 014203. doi: 10.11883/bzycj-2021-0095
XU Weizheng, HUANG Chao, ZHANG Pan, HUANG Yu, ZENG Fan, WANG Xing, ZHENG Xianxu. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges[J]. Explosion And Shock Waves, 2022, 42(1): 014203. doi: 10.11883/bzycj-2021-0095
Citation: XU Weizheng, HUANG Chao, ZHANG Pan, HUANG Yu, ZENG Fan, WANG Xing, ZHENG Xianxu. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges[J]. Explosion And Shock Waves, 2022, 42(1): 014203. doi: 10.11883/bzycj-2021-0095

锥形长药柱水下爆炸冲击波参数计算方法

doi: 10.11883/bzycj-2021-0095
基金项目: 科学挑战专题(TZ2018002);中国工程物理研究院创新发展基金(PY20200150)
详细信息
    作者简介:

    徐维铮(1991- ),男,博士,助理研究员, xuweizheng@whut.edu.cn

    通讯作者:

    黄 超(1984- ),男,博士,副研究员, huangchao21cn@126.com

  • 中图分类号: O382.1

A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges

  • 摘要: 为了计算锥形长药柱水下爆炸冲击波压力,以及研究长脉宽冲击波的传输特性,基于叠加原理建立了冲击波压力-时间曲线的计算方法,通过实验验证了该方法的有效性,在此基础上分析了锥形长药柱不同方位冲击波压力的分布规律。研究结果表明:锥形长药柱产生的冲击波压力具有各向异性,在起爆端一侧形成的是具有厚波头特征的低幅值长脉宽冲击波,在装药径向形成的是接近指数衰减的高幅值冲击波,而在远离起爆端的冲击波压力幅值和脉宽则介于前两者之间。锥形长药柱与球形装药冲击波分布的差异是由于装药形状和起爆方式的改变所导致的,由于装药不同部位起爆的时间差,导致水下爆炸冲击波在不同位置的叠加效果存在明显差异,药柱周围流场中形成的冲击波压力具有方向性。利用提出的计算方法得到的计算结果与实验结果和数值模拟结果吻合较好,研究结果可为锥形长药柱水下爆炸冲击波威力场和毁伤评估提供参考和依据。
  • 图  1  锥形长药柱结构示意图

    Figure  1.  Construction of a cone-shaped charge

    图  2  冲击波压力的指数衰减模型

    Figure  2.  Fit of the shock-wave pressure profile by exponential models

    图  3  锥形长药柱分段示意图

    Figure  3.  Discretization of the cone-shaped charge into subsegments

    图  4  锥形长药柱几何结构示意图

    Figure  4.  Structures of slender cone-shaped charges

    图  5  锥形长药柱水中冲击波测试示意图

    Figure  5.  Measurement of underwater shock waves induced by a cone-shaped charge

    图  6  测试系统示意图

    Figure  6.  Construction of the measurement system

    图  7  锥形长药柱0°、90°、180°方位的冲击波压力曲线对比

    Figure  7.  Comparison of the pressure curves in the directions of 0°, 90° and 180° at different distances from the centers of the slender cone-shaped charges

    图  8  距离锥形装药中心3 m处不同方位的冲击波峰值压力对比(三维幅值图)

    Figure  8.  Comparison of the peak pressures at 3 m from the centers of the cone-shaped charges (three-dimensional amplitude plots)

    图  9  距离锥形装药中心3 m处不同方位的冲击波峰值压力(极坐标图)

    Figure  9.  Distributions of the peak pressures at 3 m from the centers of the cone-shaped charges (polar coordinate plots)

    图  10  距离锥形装药中心3 m处不同方位的冲击波脉宽(极坐标图)

    Figure  10.  Distributions of the pressure duration at 3 m from the centers of the cone-shaped charges (polar coordinate plots)

    表  1  锥形长药柱几何参数

    Table  1.   Geometric parameters for the slender cone-shaped charges

    装药结构l1/mml2/mmd1/mmd2/mmd3/mmW/kg
    单锥长药柱2 00035.971.87.5
    双锥长药柱 300120027.555.082.57.8
    下载: 导出CSV

    表  2  锥形长药柱材料参数

    Table  2.   Material parameters for the slender cone-shaped charges

    装药类型ρ/(kg·m−3)D/(km·s−1)c/(km·s−1)α1α2
    TNT1 5806.91.51.18−0.185
    下载: 导出CSV
  • [1] COLE R H. Underwater explosions [M]. New Jersy: Princeton University Press, 1948: 252−253.
    [2] STERNBERG H M. Underwater detonation of pentolite cylinders [J]. The Physics of Fluids, 1987, 30(3): 761–769. DOI: 10.1063/1.866326.
    [3] HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029 [R]. Australia: Aeronautical and Maritime Research Laboratory, 1995.
    [4] 刘磊, 郭锐, 裴善报, 等. 柱形装药水下爆炸远场冲击波压力峰值分布 [J]. 振动与冲击, 2016, 35(17): 66–70; 76. DOI: 10.13465/j.cnki.jvs.2016.17.011.

    LIU L, GUO R, PEI S B, et al. Far-field shock wave peak pressure distribution for underwater explosion of cylindrical charges [J]. Journal of Vibration and Shock, 2016, 35(17): 66–70; 76. DOI: 10.13465/j.cnki.jvs.2016.17.011.
    [5] 张弛宇, 郭锐, 刘荣忠, 等. 水下爆炸柱型装药与球形装药远场等效关系 [J]. 鱼雷技术, 2017, 25(1): 65–70. DOI: 10.11993/j.issn.1673-1948.2017.01.0013.

    ZHANG C Y, GUO R, LIU R Z, et al. Equivalent relationship between cylindrical charge and spherical charge for underwater explosion [J]. Torpedo Technology, 2017, 25(1): 65–70. DOI: 10.11993/j.issn.1673-1948.2017.01.0013.
    [6] HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses [J]. International Journal of Impact Engineering, 2019, 130: 266–280. DOI: 10.1016/j.ijimpeng.2019.04.018.
    [7] 黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.

    HUANG C, WANG B, ZHANG Y P, et al. Behaviors of bubble jets induced by underwater explosion of cylindrical charges under free-field conditions [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.
    [8] 黄超, 汪斌, 刘仓理, 等. 非球形水下爆炸气泡坍塌机制 [J]. 高压物理学报, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.

    HUANG C, WANG B, LIU C L, et al. On the mechanism of non-spherical underwater explosion bubble collapse [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.
    [9] ZHANG Z F, WANG L K, MING F R, et al. Application of Smoothed Particle Hydrodynamics in analysis of shaped-charge jet penetration caused by underwater explosion [J]. Ocean Engineering, 2017, 145: 177–187. DOI: 10.1016/j.oceaneng.2017.08.057.
    [10] HUNTER K S, GEERS T L. Pressure and velocity fields produced by an underwater explosion [J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1483–1496. DOI: 10.1121/1.1648680.
    [11] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.
    [12] GIROUX E D. HEMP user’s manual: UCRL-51079 [R]. Livermore: Lawrence Livermore National Laboratory, 1973. DOI: 10.2172/4304397.
    [13] KNOCK C, DAVIES N, REEVES T. Predicting blast waves from the axial direction of a cylindrical charge [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 169–179. DOI: 10.1002/prep.201300188.
    [14] BJARNHOLT G. Suggestions on standards for measurement and data evaluation in the underwater explosion test [J]. Propellants, Explosives, Pyrotechnics, 1980, 5(2/3): 67–74. DOI: 10.1002/prep.19800050213.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  189
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 录用日期:  2021-12-01
  • 修回日期:  2021-06-14
  • 网络出版日期:  2021-12-02
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回