杆式弹对厚壁壳体装药冲击起爆机制模拟分析

康浩博 蒋建伟 彭嘉诚 李梅

康浩博, 蒋建伟, 彭嘉诚, 李梅. 杆式弹对厚壁壳体装药冲击起爆机制模拟分析[J]. 爆炸与冲击, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111
引用本文: 康浩博, 蒋建伟, 彭嘉诚, 李梅. 杆式弹对厚壁壳体装药冲击起爆机制模拟分析[J]. 爆炸与冲击, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111
KANG Haobo, JIANG Jianwei, PENG Jiacheng, LI Mei. Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile[J]. Explosion And Shock Waves, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111
Citation: KANG Haobo, JIANG Jianwei, PENG Jiacheng, LI Mei. Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile[J]. Explosion And Shock Waves, 2022, 42(1): 013303. doi: 10.11883/bzycj-2021-0111

杆式弹对厚壁壳体装药冲击起爆机制模拟分析

doi: 10.11883/bzycj-2021-0111
详细信息
    作者简介:

    康浩博(1997- ),男,硕士研究生,1399947337@qq.com

    通讯作者:

    蒋建伟(1962- ),男,博士,教授,bitjjw@bit.edu.cn

  • 中图分类号: O389

Simulation analysis on the initiation mechanism of the explosive charge covered with a thick shell impacted by a rod projectile

  • 摘要: 为研究高速杆式弹冲击厚壁壳体装药的起爆机制,运用冲击物理显式欧拉型动力学SPEED软件,开展了不同弹径和弹长的钨合金杆式弹与厚壁壳体Comp-B装药相互作用过程的数值模拟,采用升降法获得弹体起爆装药临界着速及装药起爆位置变化。研究结果表明:弹体起爆装药临界着速随弹径增大而显著降低,随弹长增大呈先降低后平缓变化的规律;弹体以临界着速起爆装药时,存在2种装药起爆机制,即弹体贯穿壳体后的宏观剪切起爆和未贯穿壳体的低速冲击起爆,且其机制随弹体着速在临界着速以上继续提高会发生转变,最终均会转变为高速冲击起爆机制;装药起爆位置均发生在炸药壳体交界面后一定距离处,相同机制下此距离随弹体着速提高而减小。
  • 图  1  杆式弹垂直命中模拟战斗部物理模型

    Figure  1.  The physical model for a rod projectile vertically impacting on a simulated warhead

    图  2  二维离散化模型

    Figure  2.  The two-dimensional discrete model

    图  3  弹体起爆装药的临界着速随弹径的变化

    Figure  3.  Change of critical impact velocity with projectile diameter

    图  4  弹体起爆装药的临界着速随弹长的变化

    Figure  4.  Change of critical impact velocity with projectile length

    图  5  在不同着速弹体(D=16 mm,L=80 mm)冲击装药典型时刻的压力云图

    Figure  5.  Pressure contours at typical times for the projectiles (D=16 mm, L=80 mm) impacting on the explosive charge at different impact velocities

    图  6  在不同着速弹体(D=16 mm,L=80 mm)冲击下,炸药内观测点反应度-时程曲线

    Figure  6.  Reaction fraction-time curves at the gauges in the explosive charge impacted by the projectiles (D=16 mm, L=80 mm) at different impact velocities

    图  7  在不同着速弹体(D=16 mm,L=80 mm)冲击下炸药内观测点压力-时程曲线

    Figure  7.  Pressure-time curves at the gauges in the explosive charge impacted by the projectiles (D=16 mm, L=80 mm) at different impact velocities

    图  8  不同着速弹体(D=20 mm,L=80 mm)冲击炸药典型时刻的压力云图

    Figure  8.  Pressure contours at typical times for the projectiles (D =20 mm, L =80 mm) impacting on the explosive charge at different impact velocities

    图  9  不同着速弹体(D=20 mm,L=80 mm)冲击下炸药内观测点反应度-时程曲线

    Figure  9.  Reaction fraction-time curves at the gauges in the explosive charge impacted by the projectiles (D=20 mm, L=80 mm) at different impact velocities

    图  10  不同着速弹体(D=20 mm,L=80 mm)冲击下炸药内观测点压力-时程曲线

    Figure  10.  Pressure-time curves at the gauges in the explosive charge impacted by the projectiles (D=20 mm, L=80 mm) at different impact velocities

    图  11  破片与杆式弹冲击装药典型时刻压力云图

    Figure  11.  Pressure contours at typical times for a fragment and rod projectile impacting on the explosive charge

    图  12  典型着速弹体起爆装药时刻压力云图

    Figure  12.  Pressure contours of the explosive charge detonated by the projectiles at typical impact velocities

    图  13  装药起爆位置随弹体着速的变化

    Figure  13.  Change of detonation position with projectile impact velocity

    表  1  金属材料模型

    Table  1.   Models for metal materials

    部件材料状态方程强度模型失效模型
    战斗部壳体4340钢ShockJohnson-CookJohnson-Cook
    杆式弹钨合金ShockJohnson-CookJohnson-Cook
    下载: 导出CSV

    表  2  金属Johnson-Cook强度模型参数

    Table  2.   Johnson-Cook strength model parameters for metal materials

    材料ρ/(g·cm–3)G/GPaA/MPaB/MPanCmTm/K
    4340钢 7.83 80.1 7925100.260.0141.031793
    钨合金17.30 145.0 15061770.120.0161.001723
    下载: 导出CSV

    表  3  Comp-B炸药Lee-Tarver状态方程参数

    Table  3.   Lee-Tarver equation-of-state parameters for Comp-B explosive

    IL/μs−1bLaLxLG1LcLdLyLG2LeLgLzL
    4×1060.6670.036771400.6670.333210000.22213
    下载: 导出CSV

    表  4  Comp-B炸药基本参数及JWL状态方程参数

    Table  4.   Basic parameters and JWL equation-of-state parameters for Comp-B explosive

    ρ/(g·cm−3)DCJ/(m·s−1)pCJ/GPaA/GPaB/GPaR1R2ω
    1.717798029.5524.27.6784.21.10.5
    下载: 导出CSV

    表  5  模拟结果与试验结果的对比

    Table  5.   Comparison between simulated results and tested ones

    序号弹体形状D/mmL/mmH/mmvcr/(m·s−1)
    模拟试验
    1圆柱形平头16.20 16.20 1420251990±40
    2球形16.6716.671226002650±50
    3 619501910±60
    下载: 导出CSV
  • [1] 江增荣, 李向荣, 李世才, 等. 预制破片对战斗部冲击起爆数值模拟 [J]. 弹道学报, 2009, 21(1): 9–13.

    JIANG Z R, LI X R, LI S C, et al. Numerical simulation on shock initiation of performed fragment to warhead [J]. Journal of Ballistics, 2009, 21(1): 9–13.
    [2] 陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析 [J]. 兵工学报, 2009, 30(9): 1187–1191. DOI: 10.3321/j.issn:1000-1093.2009.09.007.

    CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments [J]. Acta Armamentarii, 2009, 30(9): 1187–1191. DOI: 10.3321/j.issn:1000-1093.2009.09.007.
    [3] 王昕, 蒋建伟, 王树有, 等. 钨球对柱面带壳装药的冲击起爆数值模拟研究 [J]. 兵工学报, 2017, 38(8): 1498–1505. DOI: 10.3969/j.issn.1000-1093.2017.08.006.

    WANG X, JIANG J W, WANG S Y, et al. Numerical simulation on the initiation of cylindrical covered charge impacted by tungsten sphere fragment [J]. Acta Armamentarii, 2017, 38(8): 1498–1505. DOI: 10.3969/j.issn.1000-1093.2017.08.006.
    [4] 梁争峰, 袁宝慧. 破片撞击起爆屏蔽B炸药的数值模拟和实验 [J]. 火炸药学报, 2006, 29(1): 5–9. DOI: 10.3969/j.issn.1007-7812.2006.01.002.

    LIANG Z F, YUAN B H. Numerical simulation and experimental study of the initiation of shielded composition B impacted by fragment [J]. Chinese Journal of Explosives amd Propellants, 2006, 29(1): 5–9. DOI: 10.3969/j.issn.1007-7812.2006.01.002.
    [5] 卢锦钊, 智小琦, 李娟娟, 等. 六棱柱破片冲击起爆带壳B炸药速度阈值研究 [J]. 弹箭与制导学报, 2016, 36(1): 82−84; 120. DOI: 10.15892/j.cnki.djzdxb.2016.01.021.

    LU J Z, ZHI X Q, LI J J, et al. Threshold velocity of hexagonal prism fragment impacting on Comp B with shell [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(1): 82-84; 120. DOI: 10.15892/j.cnki.djzdxb.2016.01.021.
    [6] HELD M. Initiation phenomena with shaped charge jets [C]// 9th International Symposium on Detonation. Portland, Oregon, US: OCNR, 1989: 1416−1426.
    [7] LLOYD R M. Conventional warhead systems physics and engineering design [M]. Virginia: AIAA, 1998: 502−504.
    [8] ROSLUND L A. Initiation of warhead fragments Ⅰ: normal impacts: NOLTR73-124 [R]. White Oak: Naval Surface Weapons Center, 1973.
    [9] 方青, 卫玉章, 张克明, 等. 射弹撞击带厚盖板炸药引发爆轰的机制 [J]. 弹道学报, 1997, 9(1): 16–20.

    FANG Q, WEI Y Z, ZHANG K M, et al. An investigation on the projectile impact initiation mechanism of detonation in explosive charges covered with a thick steel plate [J]. Journal of Ballistics, 1997, 9(1): 16–20.
    [10] 李小笠, 赵国志, 李文彬. 长杆体垂直冲击带盖板炸药的临界起爆准则 [J]. 弹道学报, 2004, 16(2): 51–55. DOI: 10.3969/j.issn.1004-499X.2004.02.012.

    LI X L, ZHAO G Z, LI W B. Critical energy criterion used to predict covered explosives impacted by rod [J]. Journal of Ballistics, 2004, 16(2): 51–55. DOI: 10.3969/j.issn.1004-499X.2004.02.012.
    [11] 李小笠, 赵国志, 李文彬, 等. 长杆体正撞击平面夹层装药引发爆轰的条件 [J]. 弹箭与制导学报, 2005, 25(3): 51–54. DOI: 10.3969/j.issn.1673-9728.2005.03.016.

    LI X L, ZHAO G Z, LI W B, et al. The initiation condition of long rod projectile impact sandwich explosive [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(3): 51–54. DOI: 10.3969/j.issn.1673-9728.2005.03.016.
    [12] 李文彬, 赵国志, 王晓鸣, 等. 杆式侵彻体冲击起爆反应装甲影响因素研究 [J]. 南京理工大学学报(自然科学版), 2003, 27(3): 230–233. DOI: 10.14177/j.cnki.32-1397n.2003.03.002.

    LI W B, ZHAO G Z, WANG X M, et al. Study on effect factors of the impact initiation by rod penetrator into explosive reactive armor [J]. Journal of Nanjing University of Science and Technology, 2003, 27(3): 230–233. DOI: 10.14177/j.cnki.32-1397n.2003.03.002.
    [13] 马瑾, 卢暤, 张兵, 等. 穿甲弹对反舰导弹毁伤效应研究 [J]. 舰船科学技术, 2019, 41(12): 211–215. DOI: 10.3404/j.issn.1672-7649.2019.12.041.

    MA J, LU H, ZHANG B, et al. Research on the damage effects of AMDS on anti-ship missile [J]. Ship Science and Technology, 2019, 41(12): 211–215. DOI: 10.3404/j.issn.1672-7649.2019.12.041.
    [14] 陈浦, 汤文辉, 冉宪文. 弹芯尺寸对于反导穿甲弹引爆能力的影响 [J]. 弹箭与制导学报, 2014, 34(4): 101–106. DOI: 10.3969/j.issn.1673-9728.2014.04.027.

    CHEN P, TANG W H, RAN X W. Study on influence of core dimensions on initiation ability of anti-missile armor-piercing projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 101–106. DOI: 10.3969/j.issn.1673-9728.2014.04.027.
    [15] 姜颖资, 王伟力, 傅磊, 等. 钨合金穿甲弹对超音速导弹战斗部冲击起爆研究 [J]. 弹箭与制导学报, 2014, 34(3): 102–105. DOI: 10.3969/j.issn.1673-9728.2014.03.026.

    JIANG Y Z, WANG W L, FU L, et al. Research on the impact initiation to supersonic missile by tungsten heavy alloy penetrator [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(3): 102–105. DOI: 10.3969/j.issn.1673-9728.2014.03.026.
    [16] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362. DOI: 10.1063/1.862940.
    [17] 方青, 卫玉章, 张克明, 等. 射弹倾斜撞击带盖板炸药引发爆轰的条件 [J]. 爆炸与冲击, 1997, 17(2): 153–158.

    FANG Q, WEI Y Z, ZHANG K M. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153–158.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  228
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回