Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression
-
摘要: 利用脉冲大电流装置产生随时间变化平滑上升的磁压力,实现对平面、柱面等不同结构样品的磁驱动准等熵(斜波)压缩,为极端条件下材料动力学研究提供了一种偏离Hugoniot状态热力学路径的加载手段。本文从磁驱动准等熵加载装置、实验技术、数据处理方法等方面综述了磁驱动准等熵加载技术研究近十年的新进展,评述了利用磁驱动准等熵加载技术和方法开展极端条件下材料高压状态方程、高压强度与本构关系、相变与相变动力学等方面研究的进展情况,展望了磁驱动准等熵加载技术发展及其在材料动力学、武器物理和高能量密度物理等方面的应用前景。Abstract: A pulsed high current device is used to generate a smooth rising magnetic pressure with time for realizing quasi-isentropic (ramp wave) compression of samples with planar or cylindrical configuration, which provides a loading method of off-Hugoniot thermodynamic path for material dynamics under extreme conditions. In this paper, the progress of magnetically driven quasi-isentropic loading facilities, experimental techniques and data processing methods in recent ten years is reviewed, and the applications of magnetically driven quasi-isentropic compression techniques are introduced for material dynamics, such as high-pressure equation of state, high-pressure strength and constitutive relationship, phase transformation and phase transformation kinetics under extreme conditions. Finally, the development of magnetically-driven quasi-isentropic compression techniques and its applications in material dynamics, weapon physics and high energy density physics are prospected.
-
表 1 磁驱动准等熵压缩装置及其技术参数一览表
Table 1. Facilities of magnetically driven quasi-isentropic compression
装置 工作电压 放电电流/MA 上升时间/ns 等熵加载
压力/GPa飞片速度/
(km·s−1)物理应用 技术特点 Z/ZR 数百万伏 16~26 100~600 500 43 丝阵、套筒内爆、磁驱动准等熵压缩、高速飞片 传统的Marx加传输线技术,电流波形多级压缩,多路并联放电,波形可调,装置规模庞大。 聚龙一号(PTS) 数百万伏 8~10 90 — — 丝阵,Z箍缩 4~7 300~700 200 20 磁驱动准等熵压缩、高速飞片 VELOCE <100 kV 3~4 400~530 100 10 磁驱动准等熵压缩、高速飞片 电容器组储能,通过平板传输线直接对负载放电,装置结构紧凑,运行效率高 GEPI <100 kV 4 600 100 >10 CQ-4 <100 kV ~4 400~600 100 12~15 CQ-3(1) ~85 kV ~3 40-800 — — 磁驱动准等熵压缩,高速飞片,套筒内爆 电容器组储能,通过电缆汇流后进入低漏率防靶室对负载放电,电流波形可调 CQ-7(2) ~120 kV ~7 200~600 (10%~90%) 100~150 >15 磁驱动准等熵压缩,高速飞片,套筒内爆 单极Marx模块储能,通过电缆汇流对负载放电,多路触发放电,电流波形可调 Thor(3) Thor-96 ~200 kV 4.1 250 — — 磁驱动准等熵压缩 单极Marx模块储能,基于电缆全电路阻抗匹配传输,电流波形可调 Thor-144 ~200 kV 5.4 250 — — Thor-288 ~200 kV 6.9 250 170 — 注:(1) CQ-3装置为新技术探索样机,加载压力预计为数GPa至50GPa;(2) CQ-7加载压力为设计值;(3) Thor-288加载压力为设计值。 -
[1] SINARS D B, SWEENEY M A, ALEXANDER C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia [J]. Physics of Plasmas, 2020, 27(7): 070501. DOI: 10.1063/5.0007476. [2] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用 [J]. 力学进展, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.SUN C W, ZHAO J H, WANG G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J]. Advances in Mechanics, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208. [3] REISMAN D B, STOLTZFUS B S, STYGAR W A, et al. Pulsed power accelerator for material physics experiments [J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(9): 090401. DOI: 10.1103/PhysRevSTAB.18.090401. [4] WANG C J, CHEN X M, CAI J T, et al. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments [J]. Review of Scientific Instruments, 2016, 87(6): 065110. DOI: 10.1063/1.4953655. [5] 罗斌强, 陈学秒, 王桂吉, 等. 电磁驱动高能量密度实验装置CQ-7研制简介 [J]. 高能量密度物理, 2015(1): 29–32. [6] 王桂吉, 陈学秒, 张旭平, 等. CQ系列电磁驱动准等熵加载装置和相关实验技术 [J]. 高能量密度物理, 2020(1): 1–13. [7] MAW J R. A characteristics code for analysis of isentropic compression experiments [J]. AIP Conference Proceedings, 2004, 706(1): 1217–1220. DOI: 10.1063/1.1780457. [8] ROTHMAN S D, MAW J. Characteristics analysis of Isentropic Compression Experiments (ICE) [J]. Journal de Physique IV (Proceedings), 2006, 134: 745–750. DOI: 10.1051/jp4:2006134115. [9] 张红平, 罗斌强, 王桂吉, 等. 基于特征线反演的斜波加载实验数据处理与分析 [J]. 高压物理学报, 2016, 30(2): 123–129. DOI: 10.11858/gywlxb.2016.02.006.ZHANG H P, LUO B Q, WANG G J, et al. Inverse characteristic analysis of ramp loading experiments [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 123–129. DOI: 10.11858/gywlxb.2016.02.006. [10] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535. [11] BROWN J L, ALEXANDER C S, ASAY J R, et al. Flow strength of tantalum under ramp compression to 250 GPa [J]. Journal of Applied Physics, 2014, 115(4): 043530. DOI: 10.1063/1.4863463. [12] HAYES D B. Backward integration of the equations of motion to correct for free surface perturbations: SAND2001-1440 [R]. Livermore: Sandia National Laboratories, 2001. [13] 张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053.ZHANG H P, SUN C W, LI M, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053. [14] 王刚华, 柏劲松, 孙承纬, 等. 准等熵压缩流场反演技术研究 [J]. 高压物理学报, 2008, 22(2): 149–152. DOI: 10.11858/gywlxb.2008.02.007.WANG G H, BAI J S, SUN C W, et al. Backward integration method for tracing isentropic compression field [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149–152. DOI: 10.11858/gywlxb.2008.02.007. [15] SEAGLE C T, DAVIS J P, KNUDSON M D. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading [J]. Journal of Applied Physics, 2016, 120(16): 165902. DOI: 10.1063/1.4965990. [16] SEAGLE C T, PORWITZKY A J. Shock-ramp compression of tin near the melt line [J]. AIP Conference Proceedings, 2018, 1979(1): 040005. DOI: 10.1063/1.5044783. [17] ALEXANDER C S, ASAY J R, HAILL T A. Magnetically applied pressure-shear: a new method for direct measurement of strength at high pressure [J]. Journal of Applied Physics, 2010, 108(12): 126101. DOI: 10.1063/1.3517790. [18] LUO B Q, CHEN X M, WANG G J, et al. Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading [J]. International Journal of Impact Engineering, 2017, 100: 56–61. DOI: 10.1016/j.ijimpeng.2016.10.010. [19] LEMKE R W, DOLAN D H, DALTON D G, et al. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions [J]. Journal of Applied Physics, 2016, 119(1): 015904. DOI: 10.1063/1.4939675. [20] DAVIS J P, BROWN J L, KNUDSON M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum [J]. Journal of Applied Physics, 2014, 116(20): 204903. DOI: 10.1063/1.4902863. [21] ROOT S, MATTSSON T R, COCHRANE K, et al. Shock compression response of poly (4-methyl-1-pentene) plastic to 985 GPa [J]. Journal of Applied Physics, 2015, 118(20): 205901. DOI: 10.1063/1.4936168. [22] KRAUS R G, DAVIS J P, SEAGLE C T, et al. Dynamic compression of copper to over 450 GPa: A high-pressure standard [J]. Physical Review B, 2016, 93(13): 134105. DOI: 10.1103/PhysRevB.93.134105. [23] DESJARLAIS M P, KNUDSON M D, COCHRANE K R. Extension of the Hugoniot and analytical release model of α-quartz to 0.2–3 TPa [J]. Journal of Applied Physics, 2017, 122(3): 035903. DOI: 10.1063/1.4991814. [24] KNUDSON M D, DESJARLAIS M P. High-precision shock wave measurements of deuterium: evaluation of exchange-correlation functionals at the molecular-to-atomic transition [J]. Physical Review Letters, 2017, 118(3): 035501. DOI: 10.1103/PhysRevLett.118.035501. [25] BROWN J L, KNUDSON M D, ALEXANDER C S, et al. Shockless compression and release behavior of beryllium to 110 GPa [J]. Journal of Applied Physics, 2014, 116(3): 033502. DOI: 10.1063/1.4890232. [26] ALEXANDER C S, DING J L, ASAY J R. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading [J]. Journal of Applied Physics, 2016, 119(10): 105901. DOI: 10.1063/1.4943496. [27] LUO B Q, LI M, WANG G J, et al. Strain rate and hydrostatic pressure effects on strength of iron [J]. Mechanics of Materials, 2017, 114: 142–146. DOI: 10.1016/j.mechmat.2017.08.001. [28] 种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(6): 630–636. DOI: 10.1360/132013-378.CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6): 630–636. DOI: 10.1360/132013-378. [29] 种涛, 王桂吉, 谭福利, 等. 窗口声阻抗对锆相变动力学的影响 [J]. 物理学报, 2018, 67(7): 070204. DOI: 10.7498/aps.67.20172198.CHONG T, WANG G J, TAN F L, et al. Phase transformation kinetics of zirconium under ramp wave loading with different windows [J]. Acta Physica Sinica, 2018, 67(7): 070204. DOI: 10.7498/aps.67.20172198. [30] 种涛, 王桂吉, 谭福利, 等. 后表面声阻抗匹配对钛相变动力学的影响 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(5): 054602. DOI: 10.1360/SSPMA2017-00311.CHONG T, WANG G J, TAN F L, et al. Effect of acoustic impedance matching on kinetics of titanium phase transformation [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(5): 054602. DOI: 10.1360/SSPMA2017-00311. [31] 种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验 [J]. 高压物理学报, 2018, 32(5): 051101. DOI: 10.11858/gywlxb.20180511.CHONG T, TAN F L, WANG G J, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051101. DOI: 10.11858/gywlxb.20180511. [32] 种涛, 赵剑衡, 谭福利, 等. 斜波压缩下锡的相变动力学特性 [J]. 高压物理学报, 2020, 34(1): 011101. DOI: 10.11858/gywlxb.20190828.CHONG T, ZHAO J H, TAN F L, et al. Dynamic characteristics of phase transition of tin under ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011101. DOI: 10.11858/gywlxb.20190828. [33] ASAY J R, HALL C A, HOLLAND K G, et al. Isentropic compression of iron with the Z accelerator [M]// FURNISH M D, CHHABILDAS L C, HIXSON R S. Shock Compression of Condensed Matter-1999. New York: American Institute of Physics, 2000: 1151−1154. [34] ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful times: memories of 60 years of shock wave research at Sandia national laboratories [M]. Cham: Springer, 2017. [35] HUTSEL B T, CORCORAN P A, CUNEO M E, et al. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator [J]. Physical Review Accelerators and Beams, 2018, 21: 030401. DOI: 10.1103/PhysRevAccelBeams.21.030401. [36] AVRILLAUD G, COURTOIS L, GUERRE J, et al. GEPI: a compact pulsed power driver for isentropic compression experiments and for non shocked high velocity flyer plates [C]// Proceedings of the 14th IEEE International Pulsed Power Conference. Dallas, Texes, USA: IEEE, 2003: 913−916. [37] HEREIL P L, LASSALLE F, AVRILLAUD G. GEPI: an ice generator for dynamic material characterisation and hypervelocity impact [J]. AIP Conference Proceedings, 2004, 706(1): 1209–1212. DOI: 10.1063/1.1780455. [38] AVRILLAUD G, ASAY J R, BAVAY M, et al. Veloce: a compact pulser for dynamic material characterization and hypervelocity impact of flyer plates [J]. AIP Conference Proceedings, 2007, 955(1): 1161–1164. DOI: 10.1063/1.2832925. [39] BAVAY M, SPIELMAN R B, AVRILLAUD G. Veloce: a compact pulser for magnetically driven isentropic compression experiments [J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2658–2661. DOI: 10.1109/TPS.2008.2003132. [40] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935. [41] DENG J J, XIE W P, FENG S P, et al. From concept to reality-A review to the primary test stand and its preliminary application in high energy density physics [J]. Matter and Radiation at Extremes, 2016, 1(1): 48–58. DOI: 10.1016/j.mre.2016.01.004. [42] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展 [J]. 高能量密度物理, 2020(1): 14–26. [43] 陈学秒, 王桂吉, 赵剑衡, 等. 电缆传输多路汇流装置CQ-3-MMAF简介 [J]. 高能量密度物理, 2015(3): 103–106. [44] NISSEN E J, DOLAN D H. Temperature and rate effects in ramp-wave compression freezing of liquid water [J]. Journal of Applied Physics, 2019, 126(1): 015903. DOI: 10.1063/1.5099408. [45] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855. [46] VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003. [47] VOGLER T J. On measuring the strength of metals at ultrahigh strain rates [J]. Journal of Applied Physics, 2009, 106(5): 053530. DOI: 10.1063/1.3204777. [48] REINOVSKY R E. Pulsed power hydrodynamics: a discipline offering high precision data for motivating and validating physics models [C]//Proceedings of 2005 IEEE Pulsed Power Conference. Monterey, California, USA: IEEE, 2005: 29−36. DOI: 10.1109/PPC.2005.300466. [49] LUO B Q, JIN Y S, LI M, et al. Direct calculation of sound speed of materials under ramp wave compression [J]. AIP Advances, 2018, 8(11): 115204. DOI: 10.1063/1.5047479. [50] KNUDSON M D. Dynamic material porperties experiments using pulsed magnetic compression [C]// “From Static to Dynamic”-1st Annual Meeting of the Institute for Shock Physics. London: The Royal Society of London, 2010. [51] 罗斌强, 张红平, 种涛, 等. 磁驱动斜波压缩实验结果的不确定度分析 [J]. 高压物理学报, 2017, 31(3): 295–300. DOI: 10.11858/gywlxb.2017.03.011.LUO B Q, ZHANG H P, CHONG T, et al. Experimental uncertainty analysis of magnetically driven ramp wave compression [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 295–300. DOI: 10.11858/gywlxb.2017.03.011. [52] BROWN J L, HUND L B. Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs [J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2018, 67(4): 1023–1045. DOI: 10.1111/RSSC.12273. [53] DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. DOI: 10.1063/1.2196110. [54] DAVIS J P, KNUDSON M D, SHULENBURGER L, et al. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures [J]. Journal of Applied Physics, 2016, 120(16): 165901. DOI: 10.1063/1.4965869. [55] 莫建军, 孙承纬. 200 GPa压力范围内铝和铜的等熵压缩线计算 [J]. 高压物理学报, 2006, 20(4): 386–390. DOI: 10.11858/gywlxb.2006.04.008.MO J J, SUN C W. Compression isentropes of aluminum and copper up to 200 GPa [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 386–390. DOI: 10.11858/gywlxb.2006.04.008. [56] LUO B Q, WANG G J, MO J J, et al. Verification of conventional equations of state for tantalum under quasi-isentropic compression [J]. Journal of Applied Physics, 2014, 116(19): 193506. DOI: 10.1063/1.4902064. [57] 孙承纬, 罗斌强, 赵剑衡, 等. 从“准”等熵到“净”等熵 [J]. 高能量密度物理, 2014(3): 93–97. [58] ASAY J R, AO T, VOGLER T J, et al. Yield strength of tantalum for shockless compression to 18 GPa [J]. Journal of Applied Physics, 2009, 106(7): 073515. DOI: 10.1063/1.3226882. [59] 罗斌强, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下LY12铝的强度测量 [J]. 力学学报, 2014, 46(2): 241–247. DOI: 10.6052/0459-1879-13-227.LUO B Q, WANG G J, TAN F L, et al. Measurement of dynamic strength of LY12 aluminum under magnetically driven quasi-isentropic compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 241–247. DOI: 10.6052/0459-1879-13-227. [60] 罗斌强, 王桂吉, 谭福利, 等. 磁驱动准等熵加载下高导无氧铜的强度研究 [J]. 兵工学报, 2014, 35(S2): 106–110.LUO B Q, WANG G J, TAN F L, et al. Research on oxygen-free high-conductivity copper strength under magnetically driven quasi-isentropic loading [J]. Acta Armamentarii, 2014, 35(S2): 106–110. [61] 罗斌强, 张红平, 赵剑衡, 等. 斜波压缩实验数据的正向Lagrange处理方法研究 [J]. 爆炸与冲击, 2017, 37(2): 243–248. DOI: 10.11883/1001-1455(2017)02-0243-06.LUO B Q, ZHANG H P, ZHAO J H, et al. Lagrangian forward analysis in data processing of ramp wave compression experiments [J]. Explosion and Shock Waves, 2017, 37(2): 243–248. DOI: 10.11883/1001-1455(2017)02-0243-06. [62] VANDERSALL K S, REISMAN D B, FORBES J W, et al. Isentropic compression experiments performed by LLNL on energetic material samples using the Z accelerator: UCRL-TR-236063 [R]. Livermore: Lawrence Livermore National Lab, 2007. [63] BAER M R, HALL C A, GUSTAVSEN R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents [J]. Journal of Applied Physics, 2007, 101(3): 034906. DOI: 10.1063/1.2399881. [64] BAER M R, HOBBS M L, HALL C A, et al. Isentropic compression studies of energetic composite constituents [J]. AIP Conference Proceedings, 2007, 955(1): 1165–1168. DOI: 10.1063/1.2832926. [65] BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [J]. AIP Conference Proceedings, 2009, 1195(1): 699–702. DOI: 10.1063/1.3295235. [66] BAER M, ROOT S, GUSTAVSEN R L, et al. Temperature dependent equation of state for hmx-based composites [J]. AIP Conference Proceedings, 2012, 1426(1): 163–166. DOI: 10.1063/1.3686245. [67] HOOKS D E, HAYES D B, HARE D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa [J]. Journal of Applied Physics, 2006, 99(12): 124901. DOI: 10.1063/1.2203411. [68] 蔡进涛, 赵锋, 王桂吉, 等. 5 GPa内JO-9159炸药的磁驱动准等熵压缩响应特性 [J]. 含能材料, 2011, 19(5): 536–539. DOI: 10.3969/j.issn.1006-9941.2011.05.012.CAI J T, ZHAO F, WANG G J, et al. Response of JO-9159 under magnetically driven quasi-isentropic compression to 5 GPa [J]. Chinese Journal of Energetic Materials, 2011, 19(5): 536–539. DOI: 10.3969/j.issn.1006-9941.2011.05.012. [69] 蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455–460. DOI: 10.11858/gywlxb.2010.06.009.CAI J T, WANG G J, ZHAO J H, et al. Magnetically driven quasi-isentropic compression experiments of solid explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455–460. DOI: 10.11858/gywlxb.2010.06.009. [70] 蔡进涛, 王桂吉, 张红平, 等. 准等熵压缩下氟橡胶F2311的动力学行为实验研究 [J]. 高压物理学报, 2015, 29(1): 42–46. DOI: 10.11858/gywlxb.2015.01.007.CAI J T, WANG G J, ZHANG H P, et al. Mechanical response of fluorine rubble F2311 under quasi-isentropic compression [J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 42–46. DOI: 10.11858/gywlxb.2015.01.007. [71] 蔡进涛, 赵锋, 王桂吉, 等. HMX基PBX炸药的等熵压缩实验研究 [J]. 含能材料, 2014, 22(2): 210–214. DOI: 10.3969/j.issn.1006-9941.2014.02.017.CAI J T, ZHAO F, WANG G J, et al. Quasi-isentropic compression of HMX based PBX explosive [J]. Chinese Journal of Energetic Materials, 2014, 22(2): 210–214. DOI: 10.3969/j.issn.1006-9941.2014.02.017. [72] 种涛, 蔡进涛, 王桂吉. 斜波压缩下PBX-59 未反应固体炸药的状态方程 [J]. 含能材料, 2021, 29(1): 35–40. DOI: 10.11943/CJEM2020045.CHONG T, CAI J T, WANG G J. Equation of state of unreacted solid explosive PBX-59 under ramp wave compression [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 35–40. DOI: 10.11943/CJEM2020045. [73] BASTEA M, BASTEA S, BECKER R. High pressure phase transformation in iron under fast compression [J]. Applied Physics Letters, 2009, 95(24): 241911. DOI: 10.1063/1.3275797. [74] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. DOI: 10.1063/1.4839655. [75] RIGG P A, GREEFF C W, KNUDSON M D, et al. Influence of impurities on the α to ω phase transition in zirconium under dynamic loading conditions [J]. Journal of Applied Physics, 2009, 106(12): 123532. DOI: 10.1063/1.3267325. [76] 种涛, 唐志平, 谭福利, 等. 纯铁相变和层裂损伤的数值模拟 [J]. 高压物理学报, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528.CHONG T, TANG Z P, TAN F L, et al. Numerical simulation of phase transition and spall of iron [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528. [77] LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019. [78] MCCOY C A, KNUDSON M D, ROOT S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures [J]. Physical Review B, 2017, 96(17): 174109. DOI: 10.1103/PhysRevB.96.174109. [79] KNUDSON M D, DESJARLAIS M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard [J]. Physical Review Letters, 2009, 103(22): 225501. DOI: 10.1103/PhysRevLett.103.225501. [80] KNUDSON M D, DESJARLAIS M P, LEMKE R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3 [J]. Physical Review Letters, 2012, 108(9): 091102. DOI: 10.1103/PhysRevLett.108.091102. [81] KNUDSON M D, DESJARLAIS M P, DOLAN D H. Shock-wave exploration of the high-pressure phases of carbon [J]. Science, 2008, 322(5909): 1822–1825. DOI: 10.1126/science.1165278. [82] KNUDSON M D, DESJARLAIS M P, BECKER A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium [J]. Science, 2015, 348(6242): 1455–1460. DOI: 10.1126/science.aaa7471. [83] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705. [84] ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. DOI: 10.1016/j.jallcom.2017.10.080. [85] ZHANG X P, WANG G J, LUO B Q, et al. Refractive index and polarizability of polystyrene under shock compression [J]. Journal of Materials Science, 2018, 53: 12628–12640. DOI: 10.1007/s10853-018-2489-8. [86] 张旭平. 电磁驱动实验技术及其加载下聚苯乙烯的动态行为研究 [D]. 绵阳: 中国工程物理研究院, 2019. [87] STYGAR W A, REISMAN D B, STOLTZFUS B S, et al. Conceptual design of a 1013-W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments [J]. Physical Review Accelerators and Beams, 2016, 19(7): 070401. DOI: 10.1103/PhysRevAccelBeams.19.070401. [88] STYGAR W A, AWE T J, BAILEY J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments [J]. Physical Review Accelerators and Beams, 2015, 18(11): 110401. DOI: 10.1103/PhysRevSTAB.18.110401. [89] GRABOVSKI E V. Investigations of the thermonuclear power engineering based on Z-pinches in Russia and studies carried out on the Angara-5 facility [C]// CAEP Annual Conference on Science & Technology, 2012. [90] ZOU W K, CHEN L, JIANG J H, et al. Progress and outlook of pulsed power driver on the road to fusion [C]// Proceedings of the 11th International Conference on Dense Z-Pinches, 2019. [91] DING J L, ASAY J R. Material characterization with ramp wave experiments [J]. Journal of Applied Physics, 2007, 101(7): 073517. DOI: 10.1063/1.2709878. [92] ASAY J, HALL C A, KNUDSON M. Recent advances in high-pressure equation-of-state capabilities: SAND2000-0849C [R]. Livermore: Sandia National Laboratories, 2000.