Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression
-
摘要: 利用脉冲大电流装置产生随时间变化平滑上升的磁压力,实现对平面、柱面等不同结构样品的磁驱动准等熵(斜波)压缩,为极端条件下材料动力学研究提供了一种偏离Hugoniot状态热力学路径的加载手段。本文从磁驱动准等熵加载装置、实验技术、数据处理方法等方面综述了磁驱动准等熵加载技术研究近十年的新进展,评述了利用磁驱动准等熵加载技术和方法开展极端条件下材料高压状态方程、高压强度与本构关系、相变与相变动力学等方面研究的进展情况,展望了磁驱动准等熵加载技术发展及其在材料动力学、武器物理和高能量密度物理等方面的应用前景。Abstract: A pulsed high current device is used to generate a smooth rising magnetic pressure with time for realizing quasi-isentropic (ramp wave) compression of samples with planar or cylindrical configuration, which provides a loading method of off-Hugoniot thermodynamic path for material dynamics under extreme conditions. In this paper, the progress of magnetically driven quasi-isentropic loading facilities, experimental techniques and data processing methods in recent ten years is reviewed, and the applications of magnetically driven quasi-isentropic compression techniques are introduced for material dynamics, such as high-pressure equation of state, high-pressure strength and constitutive relationship, phase transformation and phase transformation kinetics under extreme conditions. Finally, the development of magnetically-driven quasi-isentropic compression techniques and its applications in material dynamics, weapon physics and high energy density physics are prospected.
-
为提高桥梁的抗爆能力,重要桥梁工程结构和构件的抗爆性能亟待提高。关于桥梁的抗爆性能已有较多研究[1-2]。张宇等[3]在总结桥梁结构抗爆的基础上,认为起主要支撑作用的桥墩对爆炸冲击的敏感性较大。Suthar[4]通过对比地震作用与爆炸冲击作用下桥墩的破坏模式,发现桥墩在爆炸冲击作用下会发生局部破坏,但不会产生较大水平位移。Williams等[5]基于整体现浇桥墩的受爆实验,认为在桥墩抗爆性能中抗剪设计比抗弯设计更重要。在一些大型桥梁中,预制拼装桥墩已被一定程度地应用[6-7]。王震等[8]、Bu等[9]、Zhang等[10]对其地震作用和冲击荷载展开了理论分析、实验研究及数值模拟工作。但爆炸冲击不同于低速冲击和地震作用,其瞬时冲击会对桥墩造成巨大的剪切效应,且预制拼装桥墩由于墩身不连续而抗剪能力较弱,故有必要深入研究预制节段桥墩在爆炸作用下的响应及其抗爆性能。
本文中基于ANSYS/LS-DYNA建立圆形截面预制节段拼装桥墩的三维实体分离式模型,结合实验数据验证该三维分离式模型的准确性;在此基础上,讨论节段长细比、初始预应力水平和桥墩体系类型3种关键设计因素对圆形截面预制节段拼装桥墩的爆炸响应及损伤影响;通过对爆炸冲击作用下各预制拼装桥墩动态响应与损伤结果的对比分析,研究此类桥墩的抗爆性能及其关键影响因素,以期为今后预制装配式桥墩的抗爆设计与研究提供参考。
1. 有限元模型
1.1 模型介绍
基于Rutner等[11]对桥墩的调查,选取的桥墩结构原型如图1所示。有限元模型取桥墩的主要部分,如图2(a)所示。目前对节段拼装桥墩的抗爆试验还没有统一的尺寸标准,但根据美国太平洋地震工程研究中心(PEER)[12]的桥墩尺寸统计,抗震试验桥墩直径多为40~50 cm。本文中取墩高为3 m,圆形截面直径为0.5 m。按规范JTG D62—2004[13]对墩身进行配筋。纵筋采用10根
∅ 16 mm钢筋,截面配筋率1.02%,箍筋采用∅ 8 mm钢筋,箍筋间距10 cm,混凝土保护层厚度取4 cm。采用共节点法来假设钢筋和混凝土之间位移完全协调[14],如图2(b)所示。不同炸药当量可换算为TNT炸药当量[15],鉴于恐怖炸弹规模的推算[16]及本文研究重点,炸药当量拟取52 kg TNT,爆炸中心离墩身表面2 m。炸药高度按文献[1]对不同车型的汽车炸弹TNT当量及爆炸高度大致范围的统计结果,取爆炸中心离地面0.2 m。
混凝土、空气及炸药采用Solid164单元,钢筋采用Beam161单元。通过网格收敛性分析,对于桥墩节段,混凝土网格边长约为2.5 cm,钢筋网格边长3 cm,空气网格2.5 cm。采用ALE (arbitrary Lagrange-Euler) 算法实现流固耦合动态分析,空气四周设置为无边界反射条件。
模拟中,桥梁结构上部恒载考虑为墩身设计轴压的20%,在模拟过程中保持不变。在预制节段拼装桥墩中,对墩身施加预应力,一般设置初始预应力值使得初始轴压比为10%(即初始预应力水平为10%)。
为模拟节段拼装桥墩的边界条件,模型中采用简化的盖梁与基础,根据文献[17]对船撞击桥墩的模拟结果,在模拟中对基础施加固定边界。为防止节段间混凝土的相互渗透,节段间采用面面自动接触算法控制。根据文献[18]的建议,节段间静摩擦因数取1.0,动摩擦因数取0.8,指数衰减因数取0.5。
1.2 材料参数及破坏控制
正确选取材料的本构模型是模拟的关键。LS-DYNA对空气及TNT炸药提供了不同的材料,并与状态方程联用描述其压力-体积关系。空气和TNT炸药的材料模型、状态方程及主要参数见表1。
表 1 空气及TNT炸药材料模型及主要参数Table 1. Material model and main parameters of air and TNT explosive材料 材料定义 状态方程 主要参数 空气 *MAT_NULL *EOS_LINEAR_
POLYNOMINALρ0/(kg·m−3) C0~C3, C6 C4, C5 E0/(μJ·m−3) 1.3 0 0.4 2.5 TNT炸药 *MAT_HIGH_EXPLOSIVE_
BURN*EOS_JWL ρ0/(kg·m−3) D/(km·s−1) pCJ/GPa A/GPa B/GPa 1.654 6.93 21 371.2 3.231 注:ρ0为材料密度;E0为空气的单位体积初始内能;D为炸药爆速;pCJ为炸药爆压;C0~C6为状态方程系数;A、B为实验确定常数。 对于钢筋,考虑其应变率效应,采用*MAT_PLASTIC_KINEMATIC进行定义,应变率用Cowper-Symonds模型来考虑。材料参数见表2。
表 2 钢筋材料主要参数Table 2. Main material parameters of steelρ0/(kg·m−3) E/GPa ν σy/MPa ηN/GPa C P 7 850 200 0.2 550 2.1 40 5 注:E为弹性模型,ν为泊松比,σy为屈服强度,ηN为切线模量,C和P为Cowper-Symonds应变率参数。 *MAT_JOHNSON_HOLMQUIST_CONCRETE (HJC)材料模型被广泛用于大应变、高应变速率和高压下混凝土的模拟。预制节段拼装桥墩属于装配式混凝土结构,根据装配式混凝土结构技术规程[19],桥墩材料取C50混凝土,参数见表3。
表 3 C50混凝土主要参数Table 3. Main parameters of C50 concreteρ0/(kg·m−3) G/GPa FC/MPa T/MPa pC/GPa εC 2.314 33.85 50 5 0.16 0.001 注:G为剪切模量,FC为准静态单轴抗压强度,T为抗拉强度,PC为破碎压力,εC为破碎体积应变。 为了准确控制混凝土的破坏对模拟结果的影响,在模型试算时,提取了迎爆面中心的混凝土应变率,约为200 s−1。根据2组经验公式[20-22]计算混凝土材料的动力增强系数。经计算对比,取抗压动力增强系数为2.2,抗拉动力增强系数为4,即考虑动力增强系数后混凝土极限抗压强度为110 MPa,混凝土极限抗拉强度为16 MPa。此计算值作为*MAT_ADD_EROSION控制混凝土的抗压与抗拉破坏的准则。另外,静力荷载下的典型混凝土极限拉应变为2×10−4(约为极限压应变的1/10),考虑到软化段、应变率的影响,同时防止计算中过多的单元删除,在破坏准则中设置最大主应变为0.02。
1.3 模拟工况
节段长细比(λ)、初始预应力水平和桥墩体系是影响预制节段拼装桥墩爆炸动态响应与损伤的重要因素,因此通过建立不同的有限元模型研究上述因素对其动态响应与损伤的影响。计算工况见表4。
表 4 计算工况Table 4. Calculation cases工况 墩身直径/m 节段长度/m λ 初始预应力水平 桥墩体系 1 0.5 3 6 10% S 2 0.5 1 2 10% S 3 0.5 0.75 1.5 10% S 4 0.5 0.5 1 10% S 5 0.4 0.75 1.875 10% S 6 0.6 0.75 1.25 10% S 7 0.5 0.75 1.5 5% S 8 0.5 0.75 1.5 15% S 9 0.5 0.5 1 5% S 10 0.5 0.5 1 15% S 11 0.5 0.75 M 12 0.5 0.75 10% H 注:S表示预制节段拼装桥墩,M表示整体现浇桥墩,H表示混合体系桥墩。 通过对比工况1~4研究节段长细比中节段高度的变化对结果的影响,通过对比工况3、5、6研究节段长细比中节段直径的变化对结果的影响;通过对比3、4、7~10研究不同初始预应力水平下的动态响应;通过对比工况3、11、12研究不同桥墩体系受爆下的损伤。
2. 模型验证
为了检验本文中模拟方法的准确性,采用相同模拟方法,选取文献[23]中U2B的实验结果进行比较,实验布置见图3。在验证模型中,混凝土柱尺寸和实验相同,见图4。混凝土柱采用纤维含量为2.5%的超高性能纤维增强混凝土(UHPFRC)。纵筋直径16 mm,箍筋直径8 mm。具体材料参数见文献[23]。炸药质量按实验配置采用17.5 kg,爆炸中心距混凝土柱表面1.5 m。在模拟中,混凝土柱一端采用固定约束,另一端不约束柱轴向。轴压为1 000 kN。
在没有初始预应力的条件下,得到了跨中位移时间曲线,如图5所示,柱中最大位移量为30.3 mm,与实验测试结果29.3 mm相差3.4%。破坏状态如图6所示。破坏状态在迎爆面略偏大,在背爆面出现轻微裂缝,破坏状态与实验结果基本一致。这说明本数值模拟是可靠的。
3. 结果分析及讨论
3.1 节段长细比的影响
对于不同高度的节段拼装桥墩,节段长细比λ(节段高度与其直径的比值)是影响节段拼装桥墩抗震破坏的重要因素。故本文中考虑爆炸冲击作用下节段长细比对节段拼装桥墩动态响应及损伤的影响。
对比工况1~4的模拟结果,各墩身底面位移时程曲线如图7所示。可以看出,在桥墩直径相同的情况下,随着节段长细比的减小,桥墩底面的位移逐渐减小。爆炸冲击结束时,桥墩整体位移曲线如图8所示。当1≤λ≤2时,随着节段高度减小,对应的节段间最大相对位移减小,分别为2.07、1.52、0.58 mm。桥墩整体及局部破坏如图9所示,当节段长细比λ=6时,墩身中出现剪切裂缝,表现为剪切破坏;当λ≤2时,墩身主要表现为节段间的相对位移及迎爆面的局部破坏。当λ=2变为λ=1时,局部破坏的面积减少;当λ=1时,底部节段上方接缝混凝土发生破坏,主要是底部节段的微小转角导致接缝混凝土的受压破坏和空气超压导致混凝土受压破坏。墩身由相对位移产生的耗能及底部节段相对位移产生耗能的占比如图10所示,长细比越小,节段越多,由相对位移产生的耗能越多。值得注意的是,当λ由1增加到1.5的过程中,相对位移产生的耗能并没有显著提升。
对比工况3、5、6,节段长度不变,节段直径分别为40、50、60 cm,桥墩的整体位移曲线见图8(b)。墩身破坏主要是节段间的相对位移及变形。当λ=1.875时,墩身最大侧移为13.1 mm。当λ=1.25时,墩身最大侧移为5.7 mm。说明当节段高度不变时,增加墩身直径、减小节段长细比可以提升预制节段拼装桥墩的抗爆性能。
综合分析工况1~6:一方面,节段直径不变时,节段长细比减小使墩身由剪切破坏变为节段间相对位移;另一方面,节段高度不变时,节段长细比减小能有效减小墩身的整体位移。说明减小节段长细比可以提升预制节段拼装桥墩的抗爆性能。
3.2 初始预应力水平的影响
在预应力无粘结节段拼装桥墩中,初始预应力一般取初始轴压比的10%。本文中进一步考虑了不同初始预应力水平对爆炸冲击的影响。在模拟中,对λ=1.5(4节段)和λ=1(6节段)两种桥墩分别施加5%、10%、15%的初始预应力。
距离52 kg TNT炸药中心2 m,距离桥墩底部0.2 m(迎爆面中心)的位移-时间曲线见图11。可以看出,随着初始预应力的增加,桥墩的侧移明显减小。对比工况3、7、8可知,4节段桥墩在5%、10%、15%初始预应力下的位移分别为5.5、4.4、3.4 mm,10%、15%初始预应力下的桥墩位移相比5%初始预应力水平侧移减小了20%、22.7%;对比工况4、9、10可知,6节段桥墩在5%、10%、15%初始预应力下的位移分别为5.2、4.0、3.3 mm,10%、15%初始预应力下的桥墩位移相比5%初始预应力水平侧移减小了24%、17.5%。模拟结束时,4节段和6节段桥墩的整体变形曲线如图12所示,可以看出:桥墩整体变形随初始预应力水平的增加而减小,并且节段间的相对位移主要集中在桥墩的下半段。这是因为,节段拼装桥墩产生侧移需要节段间的相对滑动,初始预应力的增加能增加节段间的摩擦力,提升耗能能力;而爆炸产生的冲击破坏是局部的,随着距离的增加,爆炸产生的能量迅速衰减,对远离爆炸中心的地方产生的影响较小。
3.3 桥墩体系的影响
混合体系是将桥墩的底部节段与基础现浇,再与上部节段拼装的一类桥墩,如图13所示。对混合体系桥墩的抗震性能,已有一些研究[24]。但预制拼装桥墩、整体现浇桥墩及混合体系桥墩在相同爆炸冲击下的动态响应与损伤特性的研究比较有限。
本文中在截面形状、纵筋配筋率、混凝土强度以及爆炸冲击相同的条件下,分析不同桥墩体系对爆炸荷载的响应。另外,因为整体现浇桥墩一般不设置初始预应力,所以只对预制拼装桥墩和混合体系桥墩施加初始预应力,但保证构件恒载相同。
桥身距离底部75 cm处(接缝位置)的位移-时间曲线如图14所示。预制拼装桥墩由于底部节段的整体位移,使底部节段产生较大的滑移(6.4 mm);而整体现浇桥墩由于墩身的整体弯曲,使该处位移较大(5.8 mm);混合体系桥墩由于底部节段固结的特点,在该处位移最小(3.2 mm),相比预制拼装桥墩和整体现浇桥墩,位移分别减小了50%、44.8%。
模拟结束时,桥墩整体位移如图15所示,混合体系桥墩与节段拼装桥墩在上部的位移基本相同,节段部分并没有出现破坏,但是出现了节段间的相对位移。图16给出了不同体系桥墩的破坏情况,可以看出,混合桥墩体系的底部节段与基础连接处出现裂缝,与整体现浇桥墩的破坏相同,如图16所示,破坏主要是因为节段接缝处的摩擦和空气超压引起的剪力和弯矩。从总体上说,在爆炸冲击作用下,混合体系桥墩具有预制节段拼装桥墩及整体现浇桥墩的综合特点。
4. 结 论
采用ANSYS/LS-DYNA有限元软件,建立圆形截面预制节段拼装桥墩受爆的三维实体分离式模型。在验证模拟方法可靠的基础上,研究了圆形截面预制节段拼装桥墩在爆炸冲击作用下的动态响应和损伤。研究结果表明:(1)炸药为52 kg TNT,爆炸距离为2 m,爆炸高度为0.2 m,在节段直径不变的情况下,节段长细比λ=6时,预制墩身主要表现为剪切破坏;λ≤2时,底部节段响应表现为局部破坏,墩身响应主要表现为节段间相对位移;在节段高度不变的情况下,节段直径越大,节段最大水平位移越小,墩身整体侧移减小;综合比较表明节段长细比减小有利于提升节段拼装桥墩的抗爆性能;(2)增加初始预应力水平可以减小墩身的侧向位移,从而在一定程度上提高桥墩的抗爆性能;(3)混合体系桥墩在现浇部分表现出弯剪破坏,在节段部分表现出节段间相对位移,总体兼具完全节段桥墩与整体现浇桥墩的破坏特点。
-
表 1 磁驱动准等熵压缩装置及其技术参数一览表
Table 1. Facilities of magnetically driven quasi-isentropic compression
装置 工作电压 放电电流/MA 上升时间/ns 等熵加载
压力/GPa飞片速度/
(km·s−1)物理应用 技术特点 Z/ZR 数百万伏 16~26 100~600 500 43 丝阵、套筒内爆、磁驱动准等熵压缩、高速飞片 传统的Marx加传输线技术,电流波形多级压缩,多路并联放电,波形可调,装置规模庞大。 聚龙一号(PTS) 数百万伏 8~10 90 — — 丝阵,Z箍缩 4~7 300~700 200 20 磁驱动准等熵压缩、高速飞片 VELOCE <100 kV 3~4 400~530 100 10 磁驱动准等熵压缩、高速飞片 电容器组储能,通过平板传输线直接对负载放电,装置结构紧凑,运行效率高 GEPI <100 kV 4 600 100 >10 CQ-4 <100 kV ~4 400~600 100 12~15 CQ-3(1) ~85 kV ~3 40-800 — — 磁驱动准等熵压缩,高速飞片,套筒内爆 电容器组储能,通过电缆汇流后进入低漏率防靶室对负载放电,电流波形可调 CQ-7(2) ~120 kV ~7 200~600 (10%~90%) 100~150 >15 磁驱动准等熵压缩,高速飞片,套筒内爆 单极Marx模块储能,通过电缆汇流对负载放电,多路触发放电,电流波形可调 Thor(3) Thor-96 ~200 kV 4.1 250 — — 磁驱动准等熵压缩 单极Marx模块储能,基于电缆全电路阻抗匹配传输,电流波形可调 Thor-144 ~200 kV 5.4 250 — — Thor-288 ~200 kV 6.9 250 170 — 注:(1) CQ-3装置为新技术探索样机,加载压力预计为数GPa至50GPa;(2) CQ-7加载压力为设计值;(3) Thor-288加载压力为设计值。 -
[1] SINARS D B, SWEENEY M A, ALEXANDER C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia [J]. Physics of Plasmas, 2020, 27(7): 070501. DOI: 10.1063/5.0007476. [2] 孙承纬, 赵剑衡, 王桂吉, 等. 磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用 [J]. 力学进展, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208.SUN C W, ZHAO J H, WANG G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J]. Advances in Mechanics, 2012, 42(2): 206–219. DOI: 10.6052/1000-0992-2012-2-20120208. [3] REISMAN D B, STOLTZFUS B S, STYGAR W A, et al. Pulsed power accelerator for material physics experiments [J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(9): 090401. DOI: 10.1103/PhysRevSTAB.18.090401. [4] WANG C J, CHEN X M, CAI J T, et al. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments [J]. Review of Scientific Instruments, 2016, 87(6): 065110. DOI: 10.1063/1.4953655. [5] 罗斌强, 陈学秒, 王桂吉, 等. 电磁驱动高能量密度实验装置CQ-7研制简介 [J]. 高能量密度物理, 2015(1): 29–32. [6] 王桂吉, 陈学秒, 张旭平, 等. CQ系列电磁驱动准等熵加载装置和相关实验技术 [J]. 高能量密度物理, 2020(1): 1–13. [7] MAW J R. A characteristics code for analysis of isentropic compression experiments [J]. AIP Conference Proceedings, 2004, 706(1): 1217–1220. DOI: 10.1063/1.1780457. [8] ROTHMAN S D, MAW J. Characteristics analysis of Isentropic Compression Experiments (ICE) [J]. Journal de Physique IV (Proceedings), 2006, 134: 745–750. DOI: 10.1051/jp4:2006134115. [9] 张红平, 罗斌强, 王桂吉, 等. 基于特征线反演的斜波加载实验数据处理与分析 [J]. 高压物理学报, 2016, 30(2): 123–129. DOI: 10.11858/gywlxb.2016.02.006.ZHANG H P, LUO B Q, WANG G J, et al. Inverse characteristic analysis of ramp loading experiments [J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 123–129. DOI: 10.11858/gywlxb.2016.02.006. [10] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535. [11] BROWN J L, ALEXANDER C S, ASAY J R, et al. Flow strength of tantalum under ramp compression to 250 GPa [J]. Journal of Applied Physics, 2014, 115(4): 043530. DOI: 10.1063/1.4863463. [12] HAYES D B. Backward integration of the equations of motion to correct for free surface perturbations: SAND2001-1440 [R]. Livermore: Sandia National Laboratories, 2001. [13] 张红平, 孙承纬, 李牧, 等. 准等熵实验数据处理的反积分方法研究 [J]. 力学学报, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053.ZHANG H P, SUN C W, LI M, et al. Backward integration method in data processing of quasi-isentropic compression experiment [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 105–111. DOI: 10.6052/0459-1879-2011-1-lxxb2010-053. [14] 王刚华, 柏劲松, 孙承纬, 等. 准等熵压缩流场反演技术研究 [J]. 高压物理学报, 2008, 22(2): 149–152. DOI: 10.11858/gywlxb.2008.02.007.WANG G H, BAI J S, SUN C W, et al. Backward integration method for tracing isentropic compression field [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 149–152. DOI: 10.11858/gywlxb.2008.02.007. [15] SEAGLE C T, DAVIS J P, KNUDSON M D. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading [J]. Journal of Applied Physics, 2016, 120(16): 165902. DOI: 10.1063/1.4965990. [16] SEAGLE C T, PORWITZKY A J. Shock-ramp compression of tin near the melt line [J]. AIP Conference Proceedings, 2018, 1979(1): 040005. DOI: 10.1063/1.5044783. [17] ALEXANDER C S, ASAY J R, HAILL T A. Magnetically applied pressure-shear: a new method for direct measurement of strength at high pressure [J]. Journal of Applied Physics, 2010, 108(12): 126101. DOI: 10.1063/1.3517790. [18] LUO B Q, CHEN X M, WANG G J, et al. Dynamic strength measurement of aluminum under magnetically driven ramp wave pressure-shear loading [J]. International Journal of Impact Engineering, 2017, 100: 56–61. DOI: 10.1016/j.ijimpeng.2016.10.010. [19] LEMKE R W, DOLAN D H, DALTON D G, et al. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions [J]. Journal of Applied Physics, 2016, 119(1): 015904. DOI: 10.1063/1.4939675. [20] DAVIS J P, BROWN J L, KNUDSON M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: application to tantalum [J]. Journal of Applied Physics, 2014, 116(20): 204903. DOI: 10.1063/1.4902863. [21] ROOT S, MATTSSON T R, COCHRANE K, et al. Shock compression response of poly (4-methyl-1-pentene) plastic to 985 GPa [J]. Journal of Applied Physics, 2015, 118(20): 205901. DOI: 10.1063/1.4936168. [22] KRAUS R G, DAVIS J P, SEAGLE C T, et al. Dynamic compression of copper to over 450 GPa: A high-pressure standard [J]. Physical Review B, 2016, 93(13): 134105. DOI: 10.1103/PhysRevB.93.134105. [23] DESJARLAIS M P, KNUDSON M D, COCHRANE K R. Extension of the Hugoniot and analytical release model of α-quartz to 0.2–3 TPa [J]. Journal of Applied Physics, 2017, 122(3): 035903. DOI: 10.1063/1.4991814. [24] KNUDSON M D, DESJARLAIS M P. High-precision shock wave measurements of deuterium: evaluation of exchange-correlation functionals at the molecular-to-atomic transition [J]. Physical Review Letters, 2017, 118(3): 035501. DOI: 10.1103/PhysRevLett.118.035501. [25] BROWN J L, KNUDSON M D, ALEXANDER C S, et al. Shockless compression and release behavior of beryllium to 110 GPa [J]. Journal of Applied Physics, 2014, 116(3): 033502. DOI: 10.1063/1.4890232. [26] ALEXANDER C S, DING J L, ASAY J R. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading [J]. Journal of Applied Physics, 2016, 119(10): 105901. DOI: 10.1063/1.4943496. [27] LUO B Q, LI M, WANG G J, et al. Strain rate and hydrostatic pressure effects on strength of iron [J]. Mechanics of Materials, 2017, 114: 142–146. DOI: 10.1016/j.mechmat.2017.08.001. [28] 种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(6): 630–636. DOI: 10.1360/132013-378.CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6): 630–636. DOI: 10.1360/132013-378. [29] 种涛, 王桂吉, 谭福利, 等. 窗口声阻抗对锆相变动力学的影响 [J]. 物理学报, 2018, 67(7): 070204. DOI: 10.7498/aps.67.20172198.CHONG T, WANG G J, TAN F L, et al. Phase transformation kinetics of zirconium under ramp wave loading with different windows [J]. Acta Physica Sinica, 2018, 67(7): 070204. DOI: 10.7498/aps.67.20172198. [30] 种涛, 王桂吉, 谭福利, 等. 后表面声阻抗匹配对钛相变动力学的影响 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(5): 054602. DOI: 10.1360/SSPMA2017-00311.CHONG T, WANG G J, TAN F L, et al. Effect of acoustic impedance matching on kinetics of titanium phase transformation [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(5): 054602. DOI: 10.1360/SSPMA2017-00311. [31] 种涛, 谭福利, 王桂吉, 等. 磁驱动斜波加载下铋的Ⅰ-Ⅱ-Ⅲ相变实验 [J]. 高压物理学报, 2018, 32(5): 051101. DOI: 10.11858/gywlxb.20180511.CHONG T, TAN F L, WANG G J, et al. Ⅰ-Ⅱ-Ⅲ phase transition of bismuth under magnetically driven ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051101. DOI: 10.11858/gywlxb.20180511. [32] 种涛, 赵剑衡, 谭福利, 等. 斜波压缩下锡的相变动力学特性 [J]. 高压物理学报, 2020, 34(1): 011101. DOI: 10.11858/gywlxb.20190828.CHONG T, ZHAO J H, TAN F L, et al. Dynamic characteristics of phase transition of tin under ramp wave loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011101. DOI: 10.11858/gywlxb.20190828. [33] ASAY J R, HALL C A, HOLLAND K G, et al. Isentropic compression of iron with the Z accelerator [M]// FURNISH M D, CHHABILDAS L C, HIXSON R S. Shock Compression of Condensed Matter-1999. New York: American Institute of Physics, 2000: 1151−1154. [34] ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful times: memories of 60 years of shock wave research at Sandia national laboratories [M]. Cham: Springer, 2017. [35] HUTSEL B T, CORCORAN P A, CUNEO M E, et al. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator [J]. Physical Review Accelerators and Beams, 2018, 21: 030401. DOI: 10.1103/PhysRevAccelBeams.21.030401. [36] AVRILLAUD G, COURTOIS L, GUERRE J, et al. GEPI: a compact pulsed power driver for isentropic compression experiments and for non shocked high velocity flyer plates [C]// Proceedings of the 14th IEEE International Pulsed Power Conference. Dallas, Texes, USA: IEEE, 2003: 913−916. [37] HEREIL P L, LASSALLE F, AVRILLAUD G. GEPI: an ice generator for dynamic material characterisation and hypervelocity impact [J]. AIP Conference Proceedings, 2004, 706(1): 1209–1212. DOI: 10.1063/1.1780455. [38] AVRILLAUD G, ASAY J R, BAVAY M, et al. Veloce: a compact pulser for dynamic material characterization and hypervelocity impact of flyer plates [J]. AIP Conference Proceedings, 2007, 955(1): 1161–1164. DOI: 10.1063/1.2832925. [39] BAVAY M, SPIELMAN R B, AVRILLAUD G. Veloce: a compact pulser for magnetically driven isentropic compression experiments [J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2658–2661. DOI: 10.1109/TPS.2008.2003132. [40] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935. [41] DENG J J, XIE W P, FENG S P, et al. From concept to reality-A review to the primary test stand and its preliminary application in high energy density physics [J]. Matter and Radiation at Extremes, 2016, 1(1): 48–58. DOI: 10.1016/j.mre.2016.01.004. [42] 王贵林, 张朝辉, 孙奇志, 等. 基于“聚龙一号”装置的磁驱动加载实验技术研究进展 [J]. 高能量密度物理, 2020(1): 14–26. [43] 陈学秒, 王桂吉, 赵剑衡, 等. 电缆传输多路汇流装置CQ-3-MMAF简介 [J]. 高能量密度物理, 2015(3): 103–106. [44] NISSEN E J, DOLAN D H. Temperature and rate effects in ramp-wave compression freezing of liquid water [J]. Journal of Applied Physics, 2019, 126(1): 015903. DOI: 10.1063/1.5099408. [45] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855. [46] VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading [J]. International Journal of Plasticity, 2009, 25(4): 671–694. DOI: 10.1016/j.ijplas.2008.12.003. [47] VOGLER T J. On measuring the strength of metals at ultrahigh strain rates [J]. Journal of Applied Physics, 2009, 106(5): 053530. DOI: 10.1063/1.3204777. [48] REINOVSKY R E. Pulsed power hydrodynamics: a discipline offering high precision data for motivating and validating physics models [C]//Proceedings of 2005 IEEE Pulsed Power Conference. Monterey, California, USA: IEEE, 2005: 29−36. DOI: 10.1109/PPC.2005.300466. [49] LUO B Q, JIN Y S, LI M, et al. Direct calculation of sound speed of materials under ramp wave compression [J]. AIP Advances, 2018, 8(11): 115204. DOI: 10.1063/1.5047479. [50] KNUDSON M D. Dynamic material porperties experiments using pulsed magnetic compression [C]// “From Static to Dynamic”-1st Annual Meeting of the Institute for Shock Physics. London: The Royal Society of London, 2010. [51] 罗斌强, 张红平, 种涛, 等. 磁驱动斜波压缩实验结果的不确定度分析 [J]. 高压物理学报, 2017, 31(3): 295–300. DOI: 10.11858/gywlxb.2017.03.011.LUO B Q, ZHANG H P, CHONG T, et al. Experimental uncertainty analysis of magnetically driven ramp wave compression [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 295–300. DOI: 10.11858/gywlxb.2017.03.011. [52] BROWN J L, HUND L B. Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs [J]. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2018, 67(4): 1023–1045. DOI: 10.1111/RSSC.12273. [53] DAVIS J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa [J]. Journal of Applied Physics, 2006, 99(10): 103512. DOI: 10.1063/1.2196110. [54] DAVIS J P, KNUDSON M D, SHULENBURGER L, et al. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures [J]. Journal of Applied Physics, 2016, 120(16): 165901. DOI: 10.1063/1.4965869. [55] 莫建军, 孙承纬. 200 GPa压力范围内铝和铜的等熵压缩线计算 [J]. 高压物理学报, 2006, 20(4): 386–390. DOI: 10.11858/gywlxb.2006.04.008.MO J J, SUN C W. Compression isentropes of aluminum and copper up to 200 GPa [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 386–390. DOI: 10.11858/gywlxb.2006.04.008. [56] LUO B Q, WANG G J, MO J J, et al. Verification of conventional equations of state for tantalum under quasi-isentropic compression [J]. Journal of Applied Physics, 2014, 116(19): 193506. DOI: 10.1063/1.4902064. [57] 孙承纬, 罗斌强, 赵剑衡, 等. 从“准”等熵到“净”等熵 [J]. 高能量密度物理, 2014(3): 93–97. [58] ASAY J R, AO T, VOGLER T J, et al. Yield strength of tantalum for shockless compression to 18 GPa [J]. Journal of Applied Physics, 2009, 106(7): 073515. DOI: 10.1063/1.3226882. [59] 罗斌强, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下LY12铝的强度测量 [J]. 力学学报, 2014, 46(2): 241–247. DOI: 10.6052/0459-1879-13-227.LUO B Q, WANG G J, TAN F L, et al. Measurement of dynamic strength of LY12 aluminum under magnetically driven quasi-isentropic compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 241–247. DOI: 10.6052/0459-1879-13-227. [60] 罗斌强, 王桂吉, 谭福利, 等. 磁驱动准等熵加载下高导无氧铜的强度研究 [J]. 兵工学报, 2014, 35(S2): 106–110.LUO B Q, WANG G J, TAN F L, et al. Research on oxygen-free high-conductivity copper strength under magnetically driven quasi-isentropic loading [J]. Acta Armamentarii, 2014, 35(S2): 106–110. [61] 罗斌强, 张红平, 赵剑衡, 等. 斜波压缩实验数据的正向Lagrange处理方法研究 [J]. 爆炸与冲击, 2017, 37(2): 243–248. DOI: 10.11883/1001-1455(2017)02-0243-06.LUO B Q, ZHANG H P, ZHAO J H, et al. Lagrangian forward analysis in data processing of ramp wave compression experiments [J]. Explosion and Shock Waves, 2017, 37(2): 243–248. DOI: 10.11883/1001-1455(2017)02-0243-06. [62] VANDERSALL K S, REISMAN D B, FORBES J W, et al. Isentropic compression experiments performed by LLNL on energetic material samples using the Z accelerator: UCRL-TR-236063 [R]. Livermore: Lawrence Livermore National Lab, 2007. [63] BAER M R, HALL C A, GUSTAVSEN R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents [J]. Journal of Applied Physics, 2007, 101(3): 034906. DOI: 10.1063/1.2399881. [64] BAER M R, HOBBS M L, HALL C A, et al. Isentropic compression studies of energetic composite constituents [J]. AIP Conference Proceedings, 2007, 955(1): 1165–1168. DOI: 10.1063/1.2832926. [65] BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [J]. AIP Conference Proceedings, 2009, 1195(1): 699–702. DOI: 10.1063/1.3295235. [66] BAER M, ROOT S, GUSTAVSEN R L, et al. Temperature dependent equation of state for hmx-based composites [J]. AIP Conference Proceedings, 2012, 1426(1): 163–166. DOI: 10.1063/1.3686245. [67] HOOKS D E, HAYES D B, HARE D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa [J]. Journal of Applied Physics, 2006, 99(12): 124901. DOI: 10.1063/1.2203411. [68] 蔡进涛, 赵锋, 王桂吉, 等. 5 GPa内JO-9159炸药的磁驱动准等熵压缩响应特性 [J]. 含能材料, 2011, 19(5): 536–539. DOI: 10.3969/j.issn.1006-9941.2011.05.012.CAI J T, ZHAO F, WANG G J, et al. Response of JO-9159 under magnetically driven quasi-isentropic compression to 5 GPa [J]. Chinese Journal of Energetic Materials, 2011, 19(5): 536–539. DOI: 10.3969/j.issn.1006-9941.2011.05.012. [69] 蔡进涛, 王桂吉, 赵剑衡, 等. 固体炸药的磁驱动准等熵压缩实验研究 [J]. 高压物理学报, 2010, 24(6): 455–460. DOI: 10.11858/gywlxb.2010.06.009.CAI J T, WANG G J, ZHAO J H, et al. Magnetically driven quasi-isentropic compression experiments of solid explosives [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 455–460. DOI: 10.11858/gywlxb.2010.06.009. [70] 蔡进涛, 王桂吉, 张红平, 等. 准等熵压缩下氟橡胶F2311的动力学行为实验研究 [J]. 高压物理学报, 2015, 29(1): 42–46. DOI: 10.11858/gywlxb.2015.01.007.CAI J T, WANG G J, ZHANG H P, et al. Mechanical response of fluorine rubble F2311 under quasi-isentropic compression [J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 42–46. DOI: 10.11858/gywlxb.2015.01.007. [71] 蔡进涛, 赵锋, 王桂吉, 等. HMX基PBX炸药的等熵压缩实验研究 [J]. 含能材料, 2014, 22(2): 210–214. DOI: 10.3969/j.issn.1006-9941.2014.02.017.CAI J T, ZHAO F, WANG G J, et al. Quasi-isentropic compression of HMX based PBX explosive [J]. Chinese Journal of Energetic Materials, 2014, 22(2): 210–214. DOI: 10.3969/j.issn.1006-9941.2014.02.017. [72] 种涛, 蔡进涛, 王桂吉. 斜波压缩下PBX-59 未反应固体炸药的状态方程 [J]. 含能材料, 2021, 29(1): 35–40. DOI: 10.11943/CJEM2020045.CHONG T, CAI J T, WANG G J. Equation of state of unreacted solid explosive PBX-59 under ramp wave compression [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 35–40. DOI: 10.11943/CJEM2020045. [73] BASTEA M, BASTEA S, BECKER R. High pressure phase transformation in iron under fast compression [J]. Applied Physics Letters, 2009, 95(24): 241911. DOI: 10.1063/1.3275797. [74] SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. DOI: 10.1063/1.4839655. [75] RIGG P A, GREEFF C W, KNUDSON M D, et al. Influence of impurities on the α to ω phase transition in zirconium under dynamic loading conditions [J]. Journal of Applied Physics, 2009, 106(12): 123532. DOI: 10.1063/1.3267325. [76] 种涛, 唐志平, 谭福利, 等. 纯铁相变和层裂损伤的数值模拟 [J]. 高压物理学报, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528.CHONG T, TANG Z P, TAN F L, et al. Numerical simulation of phase transition and spall of iron [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102. DOI: 10.11858/gywlxb.20170528. [77] LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. DOI: 10.1016/j.ijimpeng.2010.10.019. [78] MCCOY C A, KNUDSON M D, ROOT S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures [J]. Physical Review B, 2017, 96(17): 174109. DOI: 10.1103/PhysRevB.96.174109. [79] KNUDSON M D, DESJARLAIS M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard [J]. Physical Review Letters, 2009, 103(22): 225501. DOI: 10.1103/PhysRevLett.103.225501. [80] KNUDSON M D, DESJARLAIS M P, LEMKE R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3 [J]. Physical Review Letters, 2012, 108(9): 091102. DOI: 10.1103/PhysRevLett.108.091102. [81] KNUDSON M D, DESJARLAIS M P, DOLAN D H. Shock-wave exploration of the high-pressure phases of carbon [J]. Science, 2008, 322(5909): 1822–1825. DOI: 10.1126/science.1165278. [82] KNUDSON M D, DESJARLAIS M P, BECKER A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium [J]. Science, 2015, 348(6242): 1455–1460. DOI: 10.1126/science.aaa7471. [83] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705. [84] ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. DOI: 10.1016/j.jallcom.2017.10.080. [85] ZHANG X P, WANG G J, LUO B Q, et al. Refractive index and polarizability of polystyrene under shock compression [J]. Journal of Materials Science, 2018, 53: 12628–12640. DOI: 10.1007/s10853-018-2489-8. [86] 张旭平. 电磁驱动实验技术及其加载下聚苯乙烯的动态行为研究 [D]. 绵阳: 中国工程物理研究院, 2019. [87] STYGAR W A, REISMAN D B, STOLTZFUS B S, et al. Conceptual design of a 1013-W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments [J]. Physical Review Accelerators and Beams, 2016, 19(7): 070401. DOI: 10.1103/PhysRevAccelBeams.19.070401. [88] STYGAR W A, AWE T J, BAILEY J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments [J]. Physical Review Accelerators and Beams, 2015, 18(11): 110401. DOI: 10.1103/PhysRevSTAB.18.110401. [89] GRABOVSKI E V. Investigations of the thermonuclear power engineering based on Z-pinches in Russia and studies carried out on the Angara-5 facility [C]// CAEP Annual Conference on Science & Technology, 2012. [90] ZOU W K, CHEN L, JIANG J H, et al. Progress and outlook of pulsed power driver on the road to fusion [C]// Proceedings of the 11th International Conference on Dense Z-Pinches, 2019. [91] DING J L, ASAY J R. Material characterization with ramp wave experiments [J]. Journal of Applied Physics, 2007, 101(7): 073517. DOI: 10.1063/1.2709878. [92] ASAY J, HALL C A, KNUDSON M. Recent advances in high-pressure equation-of-state capabilities: SAND2000-0849C [R]. Livermore: Sandia National Laboratories, 2000. 期刊类型引用(16)
1. 刘路,宗周红,周海飞,陈振健,唐光武. 近场爆炸作用下节段预制拼装RC桥墩的易损性评估. 中国公路学报. 2024(04): 212-223 . 百度学术
2. 宗周红,甘露,院素静,李明鸿,单玉麟,林津,夏梦涛,陈振健. 桥梁结构抗爆安全防护研究综述. 中国公路学报. 2024(05): 1-37 . 百度学术
3. 李明鸿,刘晏辰,夏梦涛,宗周红,甘露,陈振健. 爆炸荷载下预制节段拼装双层钢管混凝土墩柱的动力响应数值模拟. 东南大学学报(自然科学版). 2024(03): 647-657 . 百度学术
4. 李引,邓国强. 不同打击方式对桥梁的毁伤效果研究. 兵器装备工程学报. 2024(08): 168-173 . 百度学术
5. 许凯,史菁霞. 爆炸冲击作用下节段拼装桥墩反射超压分布规律研究. 城市道桥与防洪. 2023(01): 210-215+25-26 . 百度学术
6. Sujing Yuan,Yazhu Li,Zhouhong Zong,Minghong Li,Yajun Xia. A review on close-in blast performance of RC bridge columns. Journal of Traffic and Transportation Engineering(English Edition). 2023(04): 675-696 . 必应学术
7. 朱钊,李源,韩逸涛. 车致爆炸作用下装配式桥墩损伤模式及安全防护距离. 东北大学学报(自然科学版). 2023(09): 1337-1348 . 百度学术
8. 夏梦涛,李明鸿,宗周红,甘露,黄杰,李卓. 大当量爆炸作用下预制节段拼装双层钢管混凝土墩柱的失效模式. 爆炸与冲击. 2023(11): 14-27 . 本站查看
9. 朱润田,李源,韩逸涛,蔺渠通. 爆炸荷载下高性能混凝土防护钢筋混凝土矩形墩动态力学响应研究. 桥梁建设. 2023(06): 111-118 . 百度学术
10. 张于晔,许凯,周广盼,袁万城. 爆炸冲击作用下节段拼装桥墩反射超压分布规律分析. 防灾减灾工程学报. 2023(06): 1358-1365 . 百度学术
11. 张于晔,李清华,樊伟,袁万城. 车辆撞击下预制节段拼装桥墩的损伤分析与评估. 振动与冲击. 2022(24): 150-158+209 . 百度学术
12. 方海,陈志跃,刘伟庆,万云磊,祝露. 节段拼装桥墩撞击试验研究与数值分析. 中国公路学报. 2021(07): 270-283 . 百度学术
13. 胡志坚,刘辉. 桥梁结构抗爆研究现状与展望. 中山大学学报(自然科学版). 2021(05): 13-22 . 百度学术
14. 邓照玉. 瓦斯爆炸对巷道壁面损伤破坏的数值模拟研究. 科学技术与工程. 2020(05): 1792-1798 . 百度学术
15. 张于晔,杨旭,冯君. 节段拼装桥墩在爆炸冲击作用下的破坏模式与损伤评估研究. 振动与冲击. 2020(23): 225-233 . 百度学术
16. 朱邵飞,叶青,李贺,贾真真,沈子鹤,杨卓华. 巷道空间内瓦斯爆炸冲击波传播的数值模拟. 矿业工程研究. 2019(03): 23-30 . 百度学术
其他类型引用(14)
-