金属靶板侵彻数值模拟对比研究

陈亚 谈超 郭亚洲

陈亚, 谈超, 郭亚洲. 金属靶板侵彻数值模拟对比研究[J]. 爆炸与冲击, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125
引用本文: 陈亚, 谈超, 郭亚洲. 金属靶板侵彻数值模拟对比研究[J]. 爆炸与冲击, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125
CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125
Citation: CHEN Ya, TAN Chao, GUO Yazhou. Comparative study of numerical simulations of projectile penetration into metal targets[J]. Explosion And Shock Waves, 2022, 42(4): 044201. doi: 10.11883/bzycj-2021-0125

金属靶板侵彻数值模拟对比研究

doi: 10.11883/bzycj-2021-0125
基金项目: 国家自然科学基金(11922211);高等学校学科创新引智计划(111 计划)(BP0719007)
详细信息
    作者简介:

    陈 亚(1992- ),男,硕士研究生,995096330@qq.com

    通讯作者:

    郭亚洲(1981- ),男,博士,教授,guoyazhou@nwpu.edu.cn

  • 中图分类号: O385

Comparative study of numerical simulations of projectile penetration into metal targets

  • 摘要: 数值模拟是研究靶板侵彻问题的重要手段。为对相关软件的选取提供参考,采用当前广泛使用的3种有限元软件(LS-DYNA、ABAQUS、PAM-CRASH)对同一个靶板侵彻实验进行了数值模拟,并比较了各模拟软件的优缺点。研究结果表明:3种软件的模拟结果与实验结果均基本一致;对平头形弹体侵彻的模拟效果普遍优于对半球形弹体的模拟效果;在弹体剩余速度、冲塞块速度2个方面,3种有限元软件的数值模拟结果与实验结果大致吻合。其中,ABAQUS和PAM-CRASH对上述特征量的模拟结果更接近实验结果,平均相对误差普遍小于15%,且PAM-CRASH多数模拟结果误差都小于10%;而在弹体变形量上,3种软件的模拟结果均与实验结果相差较大。此外,LS-DYNA在模拟时的鲁棒性较好,模拟结果较稳定,PAM-CRASH对参数设置最敏感,ABAQUS在计算时间和效果上较平衡。
  • 图  1  实验中所使用的弹体[11]

    Figure  1.  Projectiles used in the experiments[11]

    图  2  不同形状弹体侵彻钢板时,弹体剩余速度随弹体初速度的变化[11]

    Figure  2.  Changes of projectile residual velocities with their initial velocities during penetration of the projectiles with different nose shapes into steel targets[11]

    图  3  弹体和靶板有限元模型

    Figure  3.  Finite element models of the projectiles and targets

    图  4  模拟得到的平头形弹体在224.0 m/s速度下侵彻过程中的von Mises应力云图

    Figure  4.  Simulated von Mises stress contours for penetration of the blunt flat-headed projectile with the initial velocity of 224.0 m/s

    图  5  模拟得到的半球形弹体在327.0 m/s速度下侵彻过程中的von Mises应力云图

    Figure  5.  Simulated von Mises stress contours for penetration of the hemispherical projectile with the initial velocity of 327.0 m/s

    图  6  不同方法得到的不同形状弹体侵彻钢板时的剩余速度与其初始速度的关系曲线

    Figure  6.  Changes of projectile residual velocities with their initial velocities obtained by different methods for penetration of the projectiles with different nose shapes into steel targets

    图  7  不同方法得到的不同形状弹体侵彻钢板时的弹体直径变形量与其初始速度的关系曲线

    Figure  7.  Changes of projectile diameter deformations with their initial velocities obtained by different methods for penetration of the projectiles with different nose shapes into steel targets

    图  8  不同方法得到的不同形状弹体侵彻钢板时的弹体长度变形量与其初始速度的关系曲线

    Figure  8.  Changes of projectile length deformations with their initial velocities obtained by different methods for penetration of the projectiles with different nose shapes into steel targets

    图  9  不同方法得到的不同形状弹体侵彻钢板时冲塞块速度与弹体初始速度的关系曲线

    Figure  9.  Changes of plug velocity with initial projectile velocity obtained by different methods for penetration of the projectiles with different nose shapes into steel targets

    图  10  不同方法得到的不同形状弹体侵彻钢板时靶板最大变形量与弹体初始速度的关系曲线

    Figure  10.  Changes of the maximum deformations of the targets with initial projectile velocity obtained by different methods for penetration of the projectiles with different nose shapes into steel targets

    图  11  采用LS-DYNA模拟初始速度为399.6 m/s的平头形弹体侵彻钢靶时,靶板网格单元尺寸对平头形弹体剩余速度和靶板冲塞块速度的影响

    Figure  11.  Influences of target mesh size on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 399.6 m/s into the steel target

    图  12  采用LS-DYNA模拟初始速度为200.4 m/s的平头形弹体侵彻钢靶时,靶板网格单元尺寸对平头形弹体剩余速度和靶板冲塞块速度的影响

    Figure  12.  Influences of target mesh size on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 200.4 m/s into the steel target

    图  13  采用LS-DYNA模拟初始速度为224.7 m/s的平头形弹体侵彻钢靶时,靶板网格单元尺寸对平头形弹体剩余速度和靶板冲塞块速度的影响

    Figure  13.  Influences of target mesh size on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 224.7 m/s into the steel target

    图  14  采用LS-DYNA模拟初始速度为452.0 m/s的平头形弹体侵彻钢靶时,靶板网格单元尺寸对半球形弹体弹体剩余速度和靶板冲塞块速度的影响

    Figure  14.  Influences of target mesh size on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the hemispherical projectile with the initial velocity of 452.0 m/s into the steel target

    图  15  采用LS-DYNA模拟初始速度为300.0 m/s的平头形弹体侵彻钢靶时,靶板网格单元尺寸对半球形弹体弹体剩余速度和靶板冲塞块速度的影响

    Figure  15.  Influences of target mesh size on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the hemispherical projectile with the initial velocity of 300.0 m/s into the steel target

    图  16  采用LS-DYNA模拟初始速度为244.2 m/s的平头形弹体侵彻钢靶时,摩擦因数对平头形弹体剩余速度和靶板冲塞块速度的影响

    Figure  16.  Influences of friction coefficient on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 244.2 m/s into the steel target

    图  17  采用LS-DYNA模拟初始速度为362.9 m/s的半球形弹体侵彻钢靶时,摩擦因数对弹体剩余速度和靶板冲塞块速度的影响

    Figure  17.  Influences of friction coefficient on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the hemispherical projectile with the initial velocity of 362.9 m/s into the steel target

    图  18  采用LS-DYNA模拟初始速度为285.4 m/s的平头形弹体侵彻钢靶时,惩罚刚度缩放因数(SLSFAC)对弹体剩余速度和靶板冲塞块速度的影响

    Figure  18.  Influences of penalty stiffness scaling factors (SLSFACs) on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 285.4 m/s into the steel target

    图  19  采用LS-DYNA模拟初始速度为326.7 m/s的半球形弹体侵彻钢靶时,惩罚刚度缩放因数对弹体剩余速度和靶板冲塞块速度的影响

    Figure  19.  Influences of penalty stiffness scaling factor on the projectile residual velocity and target plug velocity simulatedby LS-DYNA for penetration of the hemispherical projectile with the initial velocity of 326.7 m/s into the steel target

    图  20  采用LS-DYNA模拟初始速度为244.2 m/s的平头形弹体侵彻钢靶时,黏性阻尼因数(VDC)对弹体剩余速度和靶板冲塞块速度的影响

    Figure  20.  Influences of viscous damping coefficient (VDC) on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the flat-headed projectile with the initial velocity of 244.2 m/s into the steel target

    图  21  采用LS-DYNA模拟初始速度为420.6 m/s的半球形弹体侵彻钢靶时,黏性阻尼因数对弹体剩余速度和靶板冲塞块速度的影响

    Figure  21.  Influences of viscous damping coefficient on the projectile residual velocity and target plug velocity simulated by LS-DYNA for penetration of the hemispherical projectile with the initial velocity of 420.6 m/s into the steel target

    表  1  弹体剩余速度平均相对误差对比分析

    Table  1.   Comparative analysis of the average relative error of the residual projectile velocity

    对比量弹体形状平均相对误差/%
    LS-DYNAABAQUSPAM-CRASH
    剩余速度平头形19.6416.3416.62
    半球形23.1321.5611.58
    剩余速度(不含弹道
    极限附近初速度)
    平头形 8.37 4.07 3.71
    半球形 4.06 5.40 2.82
    下载: 导出CSV

    表  2  弹体变形量平均相对误差对比分析

    Table  2.   Comparison of the average relative error of the projectile deformation

    对比量弹体形状平均相对误差/%
    LS-DYNAABAQUSPAM-CRASH
    直径平头形18.5148.00
    半球形22.3287.91
    长度平头形30.1922.35
    半球形19.8596.00
    下载: 导出CSV

    表  3  冲塞块速度平均相对误差对比分析

    Table  3.   Comparison of the average relative error of plug velocity

    对比量弹体形状平均相对误差/%
    LS-DYNAABAQUSPAM-CRASH
    剩余速度平头形21.8214.847.15
    半球形15.4916.115.30
    剩余速度
    (不含弹道附近初速度)
    平头形13.19 2.673.31
    半球形10.51 8.944.07
    下载: 导出CSV

    表  4  靶板最大变形量平均相对误差对比分析

    Table  4.   Comparison of the average relative error of maximum deformation of the target

    对比量弹体形状平均相对误差%
    LS-DYNAABAQUSPAM-CRASH
    靶板最大变形量平头形41.2622.2519.58
    半球形21.3528.4511.99
    下载: 导出CSV

    表  5  主要有限元模型参数对LS-DYNA数值模拟结果的影响

    Table  5.   Influences of main finite element parameters on the numerical simulation results of LS-DYNA

    影响因素弹体形状弹体剩余速度冲塞块速度
    网格密度平头形弹体影响较大影响较大
    半球形弹体无影响有一定影响
    摩擦因数平头形弹体无影响无影响
    半球形弹体无影响无影响
    惩罚刚度缩放因数平头形弹体无影响无影响
    半球形弹体无影响有一定影响
    黏性阻尼因数平头形弹体无影响无影响
    半球形弹体无影响有一定影响
    下载: 导出CSV

    表  6  主要有限元模型参数对ABAQUS数值模拟结果的影响

    Table  6.   Influences of main finite element parameters on the numerical simulation results of ABAQUS

    影响因素弹体形状弹体剩余速度冲塞块速度
    网格密度平头形弹体影响较大影响较大
    半球形弹体有一定影响有一定影响
    摩擦因数平头形弹体有一定影响有一定影响
    半球形弹体影响较大影响较大
    分析步方式平头形弹体无影响无影响
    半球形弹体有一定影响有一定影响
    沙漏控制方式平头形弹体有一定影响有一定影响
    半球形弹体有一定影响有一定影响
    下载: 导出CSV

    表  7  主要有限元模型参数对PAM-CRASH数值模拟结果的影响

    Table  7.   Influence of main finite element parameters on the numerical simulation results of PAM-CRASH

    影响因素弹体形状弹体剩余速度冲塞块速度
    网格密度平头形弹体有一定影响有一定影响
    半球形弹体影响较大影响较大
    摩擦因数平头形弹体有一定影响影响较大
    半球形弹体有一定影响有一定影响
    滑动界面惩罚比例因子平头形弹体影响较大影响较大
    半球形弹体影响较大影响较大
    接触刚度半球形弹体影响较大影响较大
    平头形弹体影响较大影响较大
    下载: 导出CSV

    表  8  不同软件计算时长比较

    Table  8.   Comparison of the calculation time of different software

    弹体形状单元数节点数软件计算所耗时间/h
    平头形981 8101 012 037LS-DYNA~28.5
    981 8101 012 037ABAQUS~38.0
    272 954 289 114PAM-CRASH~14.0
    半球形982 1071 012 345LS-DYNA~29.0
    982 1071 012 345ABAQUS~40.0
    375 741 395 789PAM-CRASH~17.5
    下载: 导出CSV
  • [1] RUSINEK A, RODRÍGUEZ-MARTÍNEZ J A, ARIAS A, et al. Influence of conical projectile diameter on perpendicular impact of thin steel plate [J]. Engineering Fracture Mechanics, 2008, 75(10): 2946–2967. DOI: 10.1016/j.engfracmech.2008.01.011.
    [2] IQBAL M A, CHAKRABARTI A, BENIWAL S, et al. 3D numerical simulations of sharp nosed projectile impact on ductile targets [J]. International Journal of Impact Engineering, 2010, 37(2): 185–195. DOI: 10.1016/j.ijimpeng.2009.09.008.
    [3] IQBAL M A, GUPTA P K, DEORE V S, et al. Effect of target span and configuration on the ballistic limit [J]. International Journal of Impact Engineering, 2012, 42: 11–24. DOI: 10.1016/j.ijimpeng.2011.10.004.
    [4] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. DOI: 10.1016/S0734-743X(01)00035-5.
    [5] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Numerical simulation of plugging failure in ballistic penetration [J]. International Journal of Solids and Structures, 2001, 38(34/35): 6241–6264. DOI: 10.1016/S0020-7683(00)00343-7.
    [6] DEY S, BØRVIK T, HOPPERSTAD O S, et al. On the influence of fracture criterion in projectile impact of steel plates [J]. Computational Materials Science, 2006, 38(1): 176–191. DOI: 10.1016/j.commatsci.2006.02.003.
    [7] DEY S, BØRVIK T, HOPPERSTAD O S, et al. On the influence of constitutive relation in projectile impact of steel plates [J]. International Journal of Impact Engineering, 2007, 34(3): 464–486. DOI: 10.1016/j.ijimpeng.2005.10.003.
    [8] FLORES-JOHNSON E A, SALEH M, EDWARDS L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile [J]. International Journal of Impact Engineering, 2011, 38(12): 1022–1032. DOI: 10.1016/j.ijimpeng.2011.08.005.
    [9] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
    [10] BØRVIK T, LEINUM J R, SOLBERG J K, et al. Observations on shear plug formation in Weldox 460E steel plates impacted by blunt-nosed projectiles [J]. International Journal of Impact Engineering, 2001, 25(6): 553–572. DOI: 10.1016/S0734-743X(00)00069-5.
    [11] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part Ⅰ: experimental study [J]. International Journal of Impact Engineering, 2002, 27(1): 19–35. DOI: 10.1016/S0734-743X(01)00034-3.
    [12] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005–1038. DOI: 10.1016/j.ijimpeng.2004.06.004.
    [13] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.

    LI X J, ZHANG C J, WANG X H, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
    [14] 彭霞锋. 高氮合金钢的动态压缩实验及动态本构关系 [D]. 成都: 西南交通大学, 2009. DOI: 10.7666/d.y1572808.

    PENG X F. Dynamical compression experiment and dynamical constitutive law of high nitrogen steel [D]. Chengdu, China: Southwest Jiaotong University, 2009. DOI: 10.7666/d.y1572808.
    [15] CALDER C A, GOLDSMITH W. Plastic deformation and perforation of thin plates resulting from projectile impact [J]. International Journal of Solids and Structures, 1971, 7(7): 863–868. DOI: 10.1016/0020-7683(71)90096-5.
    [16] 肖新科, 王要沛. ABAQUS有限元程序中Jonson-Cook断裂准则与原始模型的差异及对比分析 [J]. 南阳理工学院学报, 2018, 10(6): 38–42. DOI: 10.3969/j.issn.1674-5132.2018.06.008.

    XIAO X K, WANG Y P. The difference between the built-in Jonson-Cook fracture criterion in Abaqus finite element program and the original criterion as well as a comparative analysis [J]. Journal of Nanyang Institute of Technology, 2018, 10(6): 38–42. DOI: 10.3969/j.issn.1674-5132.2018.06.008.
    [17] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 139−160.
  • 加载中
图(21) / 表(8)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  457
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-12-23
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回