爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理

杨建华 代金豪 姚池 胡英国 张小波 周创兵

杨建华, 代金豪, 姚池, 胡英国, 张小波, 周创兵. 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理[J]. 爆炸与冲击, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126
引用本文: 杨建华, 代金豪, 姚池, 胡英国, 张小波, 周创兵. 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理[J]. 爆炸与冲击, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126
YANG Jianhua, DAI Jinhao, YAO Chi, HU Yingguo, ZHANG Xiaobo, ZHOU Chuangbing. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion And Shock Waves, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126
Citation: YANG Jianhua, DAI Jinhao, YAO Chi, HU Yingguo, ZHANG Xiaobo, ZHOU Chuangbing. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion And Shock Waves, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126

爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理

doi: 10.11883/bzycj-2021-0126
基金项目: 国家自然科学基金(U1765207, 51969015, 52179102);江西省自然科学基金(20192ACB21019, 20204BCJ23002);江西省重点实验室计划项目(20181BCD40003)
详细信息
    作者简介:

    杨建华(1986- ),男,博士,副教授,yangjianhua86@ncu.edu.cn

    通讯作者:

    姚 池(1986- ),男,博士,教授,chi.yao@ncu.edu.cn

  • 中图分类号: O382.2

Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance

  • 摘要: 针对白鹤滩水电站左岸坝基河谷底部边坡岩体爆破开挖,采用现场岩体位移监测、锚索轴力监测及数值模拟的手段,研究了爆破开挖扰动下锚固节理岩质边坡的位移突变特征及其能量机理。研究结果表明:对于深切河谷底部高地应力边坡岩体爆破开挖,爆炸荷载挤压及地应力作用下,岩体所积聚的应变能快速释放,导致了节理岩质边坡的位移突变,突变位移包括节理张开位移和岩体回弹位移两部分;地应力水平越高、岩体弹性模量越低,总的突变位移量越大;预应力锚索主要通过抑制节理张开位移来控制边坡岩体的位移突变,锚索预应力等级越高,其吸能和释能速率越高,对节理岩体位移突变的控制效果越好,当锚索的预应力等级高到一定程度后,节理岩体的突变位移不再随锚索预应力等级的升高而显著减小。
  • 图  1  白鹤滩水电站左岸坝基边坡地质剖面图

    Figure  1.  Geological section of the left-bank dam foundation slope at the Baihetan hydropower station

    图  2  边坡位移与预应力锚索轴力监测点布置

    Figure  2.  Arrangement of the observation points for monitoringthe slope displacement and anchor cable axial force

    图  3  各监测点位移随时间变化曲线

    Figure  3.  Slope displacement histories at the different observation points

    图  4  各监测点预应力锚索轴力随时间变化曲线

    Figure  4.  Axial force histories of the prestressed anchor cables at the different observation points

    图  5  锚固节理岩质边坡数值模型(单位:m)

    Figure  5.  The anchored jointed rock slope model (unit: m)

    图  6  爆破开挖面上等效爆炸荷载与地应力瞬态卸荷历程曲线

    Figure  6.  Time-histories of the equivalent blasting pressure and the transient unloading of in-situ stress on the blasting excavation boundary

    图  7  无预应力锚索时各监测点的岩体位移和应变能密度时程曲线

    Figure  7.  Rock mass displacement and strain energy density histories at the observation points without prestressed anchor cables

    图  8  不同等级预应力锚索作用下监测点A的位移和应变能密度的时程曲线

    Figure  8.  Rock mass displacement and strain energy density histories at the monitoring point A under different levels of the prestressed anchor cables

    图  9  不同预应力等级下的节理最终张开位移与岩体最终回弹位移

    Figure  9.  Joint opening displacement and rebound displacement under different levels of the prestressed anchor cables

    图  10  不同等级预应力锚索的总应变能时程变化曲线

    Figure  10.  Time-histories of the total strain energy of the anchor cables under different prestress levels

    图  11  岩体地应力和弹性模量对不同等级预应力锚索作用下监测点A的最终突变位移的影响

    Figure  11.  Effects of in-situ stress level and elastic modulus of the rock mass on final mutation displacement of the monitoring point A under different levels of the prestressed anchor cables

    表  1  岩石与节理的物理力学参数

    Table  1.   Physical and mechanical parameters of the rock and joints

    岩石节理
    弹性模量/GPa泊松比密度/(kg·m−3)内摩擦角/(°)法向刚度/GPa剪切刚度/GPa
    400.252700252010
    下载: 导出CSV

    表  2  锚索的物理力学参数

    Table  2.   Physical and mechanical parameters of the anchor cable

    锚索索体锚固剂
    弹性模量/GPa密度/(kg·m−3)横截面积/mm2黏聚力/(N·m−1)内摩擦角/(°)剪切刚度/GPa锚固外圈周长/mm锚固剂厚度/mm
    2007 8903 465.82×1073810518.149.2
    下载: 导出CSV
  • [1] 周创兵. 水电工程高陡边坡全生命周期安全控制研究综述 [J]. 岩石力学与工程学报, 2013, 32(6): 1081–1093. DOI: 10.3969/j.issn.1000-6915.2013.06.001.

    ZHOU C B. A prospect of researches on life-cycle safety control on high-steep rock slopes in hydropower engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1081–1093. DOI: 10.3969/j.issn.1000-6915.2013.06.001.
    [2] 李韬, 徐奴文, 戴峰, 等. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析 [J]. 岩土力学, 2018, 39(2): 665–674. DOI: 10.16285/j.rsm.2016.0387.

    LI T, XU N W, DAI F, et al. Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2018, 39(2): 665–674. DOI: 10.16285/j.rsm.2016.0387.
    [3] 代金豪, 杨建华, 胡英国, 等. 爆破荷载诱发节理岩体边坡位移突变的能量机理研究 [J]. 长江科学院院报, 2021, 38(2): 100–106. DOI: 10.11988/ckyyb.20191239.

    DAI J H, YANG J H, HU Y G, et al. Energy mechanism of displacement's abrupt change caused by blasting load in jointed rock mass slopes [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(2): 100–106. DOI: 10.11988/ckyyb.20191239.
    [4] 马冲, 詹红兵, 姚文敏, 等. 爆破振动作用下含软弱夹层边坡稳定性及安全判据 [J]. 爆炸与冲击, 2018, 38(3): 563–571. DOI: 10.11883/bzycj-2016-0275.

    MA C, ZHAN H B, YAO W M, et al. Stability and safety criterion of a slope with weak interlayer under blasting vibration [J]. Explosion and Shock Waves, 2018, 38(3): 563–571. DOI: 10.11883/bzycj-2016-0275.
    [5] 丁秀丽, 盛谦, 韩军, 等. 预应力锚索锚固机理的数值模拟试验研究 [J]. 岩石力学与工程学报, 2002, 21(7): 980–988. DOI: 10.3321/j.issn:1000-6915.2002.07.009.

    DING X L, SHENG Q, HAN J, et al. Numerical simulation testing study on reinforcement mechanism of prestressed anchorage cable [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 980–988. DOI: 10.3321/j.issn:1000-6915.2002.07.009.
    [6] 李剑, 陈善雄, 余飞, 等. 预应力锚索加固高陡边坡机制探讨 [J]. 岩土力学, 2020, 41(2): 707–713. DOI: 10.16285/j.rsm.2019.0034.

    LI J, CHEN S X, YU F, et al. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707–713. DOI: 10.16285/j.rsm.2019.0034.
    [7] YOSHIDA H, HORII H. Excavation analysis of a large-scale underground power house cavern by micromechanics-based continuum model of jointed rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 352.e1–352.e30. DOI: 10.1016/S1365-1609(97)00288-8.
    [8] SHENG Q, YUE Z Q, LEE C F, et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 165–184. DOI: 10.1016/S1365-1609(02)00015-1.
    [9] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU W B, ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [10] 罗忆, 卢文波, 陈明, 等. 开挖瞬态卸荷引起的节理岩体松动模拟试验 [J]. 岩石力学与工程学报, 2015, 34(S1): 2941–2947. DOI: 10.13722/j.cnki.jrme.2014.0591.

    LUO Y, LU W B, CHEN M, et al. Simulation experiment of rockmass loosening induced by excavation load transient unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2941–2947. DOI: 10.13722/j.cnki.jrme.2014.0591.
    [11] GRAN J K, SENSENY P E, GROETHE M A, et al. Dynamic response of an opening in jointed rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1021–1035. DOI: 10.1016/S0148-9062(98)00163-6.
    [12] 金李, 卢文波, 陈明, 等. 节理岩体的爆破松动机理 [J]. 爆炸与冲击, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.

    JIN L, LU W B, CHEN M, et al. Mechanism of jointed rock loosing under blasting load [J]. Explosion and Shock Waves, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.
    [13] YANG G H, ZHONG Z H, ZHANG Y C, et al. Optimal design of anchor cables for slope reinforcement based on stress and displacement fields [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 411–420. DOI: 10.1016/j.jrmge.2015.04.004.
    [14] 黄润秋. 中国西南岩石高边坡的主要特征及其演化 [J]. 地球科学进展, 2005, 20(3): 292–297. DOI: 10.3321/j.issn:1001-8166.2005.03.005.

    HUANG R Q. Main characteristics of high rock slopes in Southwestern China and their dynamic evolution [J]. Advances in Earth Science, 2005, 20(3): 292–297. DOI: 10.3321/j.issn:1001-8166.2005.03.005.
    [15] 刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究 [J]. 岩石力学与工程学报, 2016, 35(5): 865–878. DOI: 10.13722/j.cnki.jrme.2015.0933.

    LIU G F, FENG X T, JIANG Q, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse caverns in Baihetan [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865–878. DOI: 10.13722/j.cnki.jrme.2015.0933.
    [16] YANG J H, JIANG Q H, ZHANG Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel [J]. Tunnelling and Underground Space Technology, 2018, 71: 591–604. DOI: 10.1016/j.tust.2017.10.010.
    [17] 陈洋, 吴亮, 陈明, 等. 高应力岩体爆破卸荷过程中应变率及应变能特征 [J]. 爆炸与冲击, 2019, 39(10): 103202. DOI: 10.11883/bzycj-2018-0225.

    CHEN Y, WU L, CHEN M, et al. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass [J]. Explosion and Shock Waves, 2019, 39(10): 103202. DOI: 10.11883/bzycj-2018-0225.
    [18] 杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.

    YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
    [19] 中国电建集团华东勘测设计研究院有限公司. 金沙江白鹤滩水电站左右岸600 m高程以上坝肩开挖及支护工程招标设计报告 [R]. 杭州: 中国电建集团华东勘测设计研究院有限公司, 2013.
    [20] Itasca Consulting Group Inc. FLAC3D user’s guide, version 5.01 [Z]. Minneapolis, USA: Itasca, 2013.
    [21] BLAIR D P. Acoustic pulse transmission in half-spaces and finite-length cylindrical rods [J]. Geophysics, 1985, 50(11): 1676–1683. DOI: 10.1190/1.1441858.
    [22] DUAN B F, XIA H L, YANG X X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways [J]. Tunnelling and Underground Space Technology, 2018, 71: 605–622. DOI: 10.1016/j.tust.2017.10.012.
    [23] YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  170
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-11-26
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回