一种强耦合预估-校正浸入边界法

张和涛 宁建国 许香照 马天宝

张和涛, 宁建国, 许香照, 马天宝. 一种强耦合预估-校正浸入边界法[J]. 爆炸与冲击, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129
引用本文: 张和涛, 宁建国, 许香照, 马天宝. 一种强耦合预估-校正浸入边界法[J]. 爆炸与冲击, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129
ZHANG Hetao, NING Jianguo, XU Xiangzhao, MA Tianbao. A strong coupling prediction-correction immersed boundary method[J]. Explosion And Shock Waves, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129
Citation: ZHANG Hetao, NING Jianguo, XU Xiangzhao, MA Tianbao. A strong coupling prediction-correction immersed boundary method[J]. Explosion And Shock Waves, 2021, 41(9): 094201. doi: 10.11883/bzycj-2021-0129

一种强耦合预估-校正浸入边界法

doi: 10.11883/bzycj-2021-0129
基金项目: 国家自然科学基金(12032006, 11772061)
详细信息
    作者简介:

    张和涛(1992- ),男,博士,7520210150@bit.edu.cn

    通讯作者:

    马天宝(1981- ),男,博士,教授,madabal@bit.edu.cn

  • 中图分类号: O354; O357

A strong coupling prediction-correction immersed boundary method

  • 摘要: 为克服传统浸入边界法的质量不守恒缺陷,提出了一种用于可压缩流固耦合问题的强耦合预估-校正浸入边界法。通过阐述一般流固耦合系统的矩阵表示,推导了流固耦合系统的强耦合Gauss-Seidel迭代格式,进一步导出预估-校正格式,提出了预估-校正浸入边界法。该方法使用无耦合边界模型对流体进行预估,将流固耦合边界视为自由面,固体原本占据的空间初始化为零质量的单元,允许流体自由穿过耦合边界。对于流体的计算,使用带有minmod限制器的二阶MUSCL有限体积格式和基于Zha-Bilgen分裂的AUSM+-up方法,配合三阶Runge-Kutta格式推进时间步。在校正步骤中,通过一组质量守恒的输运规则来实现输运过程。输运算法可概括为将边界内侧的流体进行标记,根据标记顺序以均匀方式分割和移动流体,产生一个指向边界外侧的流动,最后在边界附近施加速度校正保证无滑移条件。标记和输运算法避免了繁琐的对截断单元的几何处理,确保了算法易于实现。对于固体的计算,分别采用一阶差分格式和隐式动力学有限元格式求解刚体和线弹性体,并利用高斯积分获得固体表面的耦合力。使用预估-校正浸入边界法计算了一维问题和二维问题。在一维活塞问题中,获得了压力分布、相对质量历史和误差曲线,并与其他方法进行了对比。在二维的激波冲击平板问题中,获得了数值模拟纹影和平板结构的挠度历史,并与实验结果进行了对比。研究表明,该方法区别于传统的虚拟网格方法和截断单元方法,能够精确地维持流场的质量守恒并易于实现,且具有一阶收敛精度,能够较准确地预测激波绕射后的流场以及平板在激波作用下的挠度,为开发流固耦合算法提供了一种新的思路。
  • 图  1  根据镜像点I构造虚拟网格结点G

    Figure  1.  Construct the ghost point G based on its image point I

    图  2  ${t_n}$时刻到${t_{n + 1}}$时刻边界进行移动,造成红色的失效单元和蓝色的新增单元

    Figure  2.  Boundary motion on a fixed grid from time ${t_n}$to ${t_{n + 1}}$. Dead (red) and fresh (blue) cells are generated by the motion

    图  3  流固耦合系统的子域变化(实线代表${t_n}$时刻的边界,虚线代表${t_{n + 1}}$时刻的边界)

    Figure  3.  Changes of the subdomains of the fluid-structure interaction system, where solid lines are boundaries at ${t_n}$, and dashed lines are boundaries at ${t_{n + 1}}$

    图  4  流体标记和输运方向,曲线为浸入边界

    Figure  4.  Fluid markers and direction of transportation, the curve is the immersed boundary

    图  5  依据染色顺序逐层输运流体

    Figure  5.  Transport the fluid in sequence of colors

    图  6  t=0.003时刻的压力分布(网格数为1 440,虚线表示浸入边界)

    Figure  6.  Pressure distribution at t=0.003 (The number of cells is1 440, and the dashed lines stand for the immersed boundaries.)

    图  7  流体相对质量的历史曲线

    Figure  7.  History of the relative mass of the fluid

    图  8  压力和速度的无量纲L2范数误差

    Figure  8.  Dimensionless L2 norms of error of the pressure and velocity

    图  9  两种方法获得的流场密度$\rho (x,t)$云图

    Figure  9.  Mass density $\rho (x,t)$ contours of the fluid by two methods

    图  10  激波管初始条件(蓝色部分为有机玻璃板,灰色部分为静止流场,右侧红色部分为输入边界)

    Figure  10.  Initial conditions of the shock tube (The PMMA panel is blue, the static fluid is grey, the right boundary in red color is the inflow.)

    图  11  激波管实验段(底部的金属方块为基座,竖立薄片为实验测量的平板)

    Figure  11.  Experimental section of the shock tube (The metal block on the bottom is the base, and the vertical sheet is the tested panel.)

    图  12  局部网格(灰色部分为流场,蓝色部分为平板)

    Figure  12.  Local grids (The fluid is grey, and the panel is blue.)

    图  13  不同时刻实验纹影与模拟纹影的对比

    Figure  13.  Comparison of experimental and simulated shadowgraphs

    图  14  平板的最大挠度

    Figure  14.  Maximum deflections of the panel

  • [1] PESKIN C S. Flow patterns around heart valves: a numerical method [J]. Journal of Computational Physics, 1972, 10(2): 252–271. DOI: 10.1016/0021-9991(72)90065-4.
    [2] PESKIN C S. Numerical analysis of blood flow in the heart [J]. Journal of Computational Physics, 1977, 25(3): 220–252. DOI: 10.1016/0021-9991(77)90100-0.
    [3] 王力, 田方宝. 浸入边界法及其在可压缩流动中的应用和进展 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 094703. DOI: 10.1360/SSPMA2018-00191.

    WANG L, TIAN F B. Recent progress of immersed boundary method and its applications in compressible fluid flow [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(9): 094703. DOI: 10.1360/SSPMA2018-00191.
    [4] SEO J H, MITTAL R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries [J]. Journal of Computational Physics, 2011, 230(4): 1000–1019. DOI: 10.1016/j.jcp.2010.10.017.
    [5] 王力, 田方宝. 弹性拍翼悬停时的流固耦合效应 [J]. 气体物理, 2020, 5(4): 21–30. DOI: 10.19527/j.cnki.2096-1642.0812.

    WANG L, TIAN F B. Fluid-structure interaction of flexible flapping wing in hovering flight [J]. Physics of Gases, 2020, 5(4): 21–30. DOI: 10.19527/j.cnki.2096-1642.0812.
    [6] CHENG L, DU L, WANG X Y, et al. A semi-implicit immersed boundary method for simulating viscous flow-induced sound with moving boundaries [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113438. DOI: 10.1016/j.cma.2020.113438.
    [7] 赵西增, 付英男, 张大可, 等. 紧致插值曲线方法在流向强迫振荡圆柱绕流中的应用 [J]. 力学学报, 2015, 47(3): 441–450. DOI: 10.6052/0459-1879-14-387.

    ZHAO X Z, FU Y N, ZHANG D K, et al. Application of a CIP-based numerical simulation of flow past an in-line forced oscillating circular cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 441–450. DOI: 10.6052/0459-1879-14-387.
    [8] 段松长, 赵西增, 叶洲腾, 等. 错列角度对双圆柱涡激振动影响的数值模拟研究 [J]. 力学学报, 2018, 50(2): 244–253. DOI: 10.6052/0459-1879-17-345.

    DUAN S C, ZHAO X Z, YE Z T, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244–253. DOI: 10.6052/0459-1879-17-345.
    [9] 杨明, 刘巨保, 岳欠杯, 等. 涡激诱导并列双圆柱碰撞数值模拟研究 [J]. 力学学报, 2019, 51(6): 1785–1796. DOI: 10.6052/0459-1879-19-224.

    YANG M, LIU J B, YUE Q B, et al. Numerical simulation on the vortex-induced collision of two side-by-side cylinders [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1785–1796. DOI: 10.6052/0459-1879-19-224.
    [10] 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响 [J]. 力学学报, 2019, 51(2): 432–440. DOI: 10.6052/0459-1879-18-208.

    CHEN W L, JI C N, XU D. Effects of the added cylinders with different control angles on the vortex-induced vibrations of a circular cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 432–440. DOI: 10.6052/0459-1879-18-208.
    [11] HOSSEINJANI A A, ROOHI A H. Immersed boundary method for MHD unsteady natural convection around a hot elliptical cylinder in a cold rhombus enclosure filled with a nanofluid [J]. SN Applied Sciences, 2021, 3(2): 270. DOI: 10.1007/s42452-021-04221-3.
    [12] YE H X, CHEN Y, MAKI K. A discrete-forcing immersed boundary method for turbulent-flow simulations [J]. Proceedings of the Institution of Mechanical Engineers, 2021, 235(1): 188–202. DOI: 10.1177/1475090220927245.
    [13] SOTIROPOULOS F, YANG X. Immersed boundary methods for simulating fluid-structure interaction [J]. Progress in Aerospace Sciences, 2014, 65: 1–21. DOI: 10.1016/j.paerosci.2013.09.003.
    [14] YOUSEFZADEH M, BATTIATO I. High order ghost-cell immersed boundary method for generalized boundary conditions [J]. International Journal of Heat and Mass Transfer, 2019, 137: 585–598. DOI: 10.1016/j.ijheatmasstransfer.2019.03.061.
    [15] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究 [J]. 物理学报, 2017, 66(22): 224702. DOI: 10.7498/aps.66.224702.

    WU X D, LIU H P, CHEN F. A method combined immersed boundary with multi-relaxation-time lattice Boltzmann flux solver for fluid-structure interaction [J]. Acta Physica Sinica, 2017, 66(22): 224702. DOI: 10.7498/aps.66.224702.
    [16] BOUKHARFANE R, EUGȆNIO RIBEIRO F H, BOUALI Z, et al. A combined ghost-point-forcing/direct-forcing immersed boundary method (IBM) for compressible flow simulations [J]. Computers and Fluids, 2018, 162: 91–112. DOI: 10.1016/j.compfluid.2017.11.018.
    [17] MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary non-conforming grids [J]. Center for Turbulence Research. Annual Research Briefs, 2001: 353–366.
    [18] 朱祥德, 陈春刚, 肖锋. 一种基于多矩的有限体积浸入边界法 [J]. 计算物理, 2010, 27(3): 342–352. DOI: 10.19596/j.cnki.1001-246x.2010.03.004.

    ZHU X D, CHEN C G, XIAO F. A multi-moment immersed-boundary finite-volume scheme [J]. Chinese Journal of Computational Physics, 2010, 27(3): 342–352. DOI: 10.19596/j.cnki.1001-246x.2010.03.004.
    [19] LEE J M, YOU D H. An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations [J]. Journal of Computational Physics, 2013, 233(1): 295–314. DOI: 10.1016/j.jcp.2012.08.044.
    [20] 辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动 [J]. 物理学报, 2017, 66(4): 044704. DOI: 10.7498/aps.66.044704.

    XIN J J, SHI F L, JIN Q. Numerical simulation of complex immersed boundary flow by a radial basis function ghost cell method [J]. Acta Physica Sinica, 2017, 66(4): 044704. DOI: 10.7498/aps.66.044704.
    [21] XIN J J, LI T Q, SHI F L. A radial basis function for reconstructing complex immersed boundaries in ghost cell method [J]. Journal of Hydrodynamics, 2018, 30(5): 890–897. DOI: 10.1007/s42241-018-0097-3.
    [22] 石伏龙, 辛建建, 马麟. 梯度增量level set/虚拟网格法模拟波浪结构物相互作用 [J]. 工程热物理学报, 2018, 39(11): 2420–2428.

    SHI F L, XIN J J, MA L. A gradient-augmented level set/ghost cell method for the simulation of wave structure interaction [J]. Journal of Engineering Thermophysics, 2018, 39(11): 2420–2428.
    [23] QU Y G, SHI R C, BATRA R C. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids [J]. Journal of Computational Physics, 2018, 354: 672–691. DOI: 10.1016/j.jcp.2017.10.045.
    [24] HAJI MOHAMMADI M, SOTIROPOULOS F, BRINKERHOFF J. Moving least squares reconstruction for sharp interface immersed boundary methods [J]. International Journal for Numerical Methods, 2019, 90(2): 57–80. DOI: 10.1002/fld.4711.
    [25] 雷悦, 石伏龙. 虚拟网格法模拟静止或运动并列布置双圆柱绕流现象 [J]. 工程热物理学报, 2020, 41(8): 1974–1983.

    LEI Y, SHI F L. A ghost cell method for simulating flows around stationary of moving twin cylinders in a side-by-side arrangement [J]. Journal of Engineering Thermophysics, 2020, 41(8): 1974–1983.
    [26] XIE F T, QU Y G, ISLAM M A, et al. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries [J]. Computers and Fluids, 2020, 202: 104498. DOI: 10.1016/j.compfluid.2020.104498.
    [27] CHI C, ABDELSAMIE A, THÉVENIN D. A directional ghost-cell immersed boundary method for incompressible flows [J]. Journal of Computational Physics, 2020, 404: 109122. DOI: 10.1016/j.jcp.2019.109122.
    [28] ZHENG K Y, ZHAO X Z, YANG Z J, et al. Numerical simulation of water entry of a wedge using a modified ghost-cell immersed boundary method [J]. Journal of Marine Science and Technology, 2020, 25(2): 589–608. DOI: 10.1007/s00773-019-00666-9.
    [29] CLARKE D K, HASSAN H A, SALAS M D. Euler calculations for multielement airfoils using Cartesian grids [J]. AIAA Journal, 1986, 24(3): 353–358. DOI: 10.2514/3.9273.
    [30] MEYER M, DEVESA A, HICKEL S, et al. A conservative immersed interface method for large-eddy simulation of incompressible flows [J]. Journal of Computational Physics, 2010, 229(18): 6300–6317. DOI: 10.1016/j.jcp.2010.04.040.
    [31] MONASSE L, DARU V, MARIOTTI C, et al. A conservative coupling algorithm between a compressible flow and a rigid body using an embedded boundary method [J]. Journal of Computational Physics, 2012, 231(7): 2977–2994. DOI: 10.1016/j.jcp.2012.01.002.
    [32] SCHNEIDERS L, GÜNTHER C, MEINKE M, et al. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows [J]. Journal of Computational Physics, 2016, 311: 62–86. DOI: 10.1016/j.jcp.2016.01.026.
    [33] BRADY P T, LIVESCU D. Foundations for high-order, conservative cut-cell methods: stable discretizations on degenerate meshes [J]. Journal of Computational Physics, 2021, 426: 109794. DOI: 10.1016/j.jcp.2020.109794.
    [34] SEO J H, MITTAL R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations [J]. Journal of Computational Physics, 2011, 230(19): 7347–7363. DOI: 10.1016/j.jcp.2011.06.003.
    [35] 张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 279–288.

    ZHANG D L. A course in computational fluid dynamics [M]. Beijing: Higher Education Press, 2010: 279–288.
    [36] TORO E F, VÁZQUEZ-CENDÓN M E. Flux splitting schemes for the Euler equations [J]. Computers and Fluids, 2012, 70: 1–12. DOI: 10.1016/j.compfluid.2012.08.023.
    [37] LIOU M S. A sequel to AUSM, part II: AUSM+-up for all speeds [J]. Journal of Computational Physics, 2006, 214(1): 137–170. DOI: 10.1016/j.jcp.2005.09.020.
    [38] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.

    WANG X C. Finite element method [M]. Beijing: Tsinghua University Press, 2003.
    [39] 李亭鹤, 阎超. 一种新的分区重叠洞点搜索方法-感染免疫法 [J]. 空气动力学学报, 2001, 19(2): 156–160. DOI: 10.3969/j.issn.0258-1825.2001.02.004.

    LI T H, YAN C. A new method of hole-point search in grid embedding technique [J]. Acta Aerodynamica Sinica, 2001, 19(2): 156–160. DOI: 10.3969/j.issn.0258-1825.2001.02.004.
  • 加载中
图(14)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  250
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回