Optimal design of ballistic performance of fiber-metal laminates based on the response surface method
-
摘要: 纤维金属层合板因其复合材料的各向异性和层合结构特征而具有较好的可设计性,开展金属纤维层合板的优化设计研究对其力学性能的增强和轻量化具有重要意义。为提高纤维金属层合板的抗弹性能,基于响应面分析法对纤维金属层合板的铺层方向和铺层厚度进行了优化设计。采用Box-Behnken方法进行方案设计,以纤维金属层合板各铺层相对厚度比为设计变量,以结构的比吸能为设计目标,根据设计的方案进行参数化建模获取样本点,在对设计样本进行方差分析和参数估计的基础上,建立了结构比吸能的响应面模型并验证了其精确度。采用遗传算法对响应面方程进行寻优分析,通过显式动力学计算程序ABAQUS/Explicit验证优化效果。最终,在最优的铺层方案下,层合板的质量减小了11.70%,能量吸收增加了19.40%,抗弹性能显著提升。Abstract: Fiber-metal laminates are highly designable due to the characteristics of their constituent materials and laminate structure. They have the characteristics of anisotropy, large interface differences, and flexible design. Optimizing the design of fiber-metal laminates is of great significance to the enhancement of its mechanical properties and weight reduction. In order to improve the ballistic performance of fiber-metal laminates, of which the layer direction and layer thickness are optimized based on the response surface analysis method. For layup direction optimization, several layup directions are designed based on the corresponding principles according to the composite material layup optimization design requirements, and the energy absorptions of the corresponding structures are calculated, respectively, then the design plan for the better layup direction is screened out. For the optimization of ply thickness, the relative thickness ratio of each ply of the fiber-metal laminate is used as the design variable, and the specific energy absorption of the structure is the design goal. The Box-Behnken method is used to design the experiment. According to the test plan, the explicit dynamic calculation program ABAQUS/Explicit is used for parametric modeling to obtain test sample points, and the design test samples are analyzed by using variance analysis and parameter estimation, and the response surface model of structural specific energy absorption (SEA) is established. The errors between the experimental values and the predicted values are compared, and the model can be used for prediction; the genetic algorithm is used to optimize the obtained response surface equation, and the optimization effect is verified by ABAQUS/Explicit. The optimization result shows that the accuracy of the obtained response surface model is high. Under the premise of not increasing the thickness and weight of the laminate, the best layup plan is finally obtained, which improves the energy absorption capacity of the laminate. Finally, the mass of laminates decreases by 11.70% and the energy absorption increases by 19.40% under the optimal lamination scheme.
-
Key words:
- laminate /
- response surface method /
- genetic algorithm /
- composite material
-
表 1 热塑性纤维增强材料的弹性参数
Table 1. Elastic parameters of thermoplastic fiber reinforced materials
ρ/(kg∙m−3) E1/GPa E2/GPa E3/GPa μ12 μ13 μ23 G12/GPa G13/GPa G23/GPa 1 800 13 13 4.8 0.1 0.3 0.3 1.72 1.69 1.69 表 2 热塑性纤维增强材料的强度参数
Table 2. Strength parameters of thermoplastic fiber reinforced materials
XT/MPa XC/MPa YT/MPa YC/MPa S12/MPa S13/MPa S23/MPa 300 200 300 200 120 120 120 表 3 网格收敛性分析
Table 3. Analysis of grid convergence
网格尺寸/mm 网格数量 吸能/J 相对偏差/% 2.0 43 908 90.72 34.70 1.0 171 408 69.42 3.07 0.5 680 000 67.35 0 ρc/(kg∙m−3) En/GPa Es/GPa Et/GPa $s_{\rm{n} }^{(0)}$/MPa $s_{\rm{s} }^{(0)}$/MPa $s_{\rm{t} }^{(0)}$/MPa $G_{\rm{n} }^{(0)}$/(J∙m−2) $G_{\rm{s} }^{(0)}$/(J∙m−2) $G_{\rm{t} }^{(0)}$/(J∙m−2) 900 2.05 0.72 0.72 70 100 100 300 700 700 表 5 弹体剩余速度实验结果与数值模拟结果对比
Table 5. Comparison of projectile residual velocities between experimental and numerical results
实验工况 实验初速/(m·s−1) 实验剩余速度/(m·s−1) 模拟剩余速度/(m·s−1) 剩余速度相对误差/% 3Al(6-O)/2G-1 143 109 107.9 –1.0 3Al(6-O)/2G-2 172 125 127.6 2.1 3Al(6-O)/2G-3 195 150 151.1 0.7 3Al(6-O)/2G-4 214 181 172.1 –4.9 3Al(6-O)/2G-5 252 216 211.5 –2.1 表 6 纤维金属层合板铺层方案
Table 6. Layer schemes of fiber metal laminates
铺层方案 铺层方向 铺层方案 铺层方向 1 Al/45°/90°/0°/Al/0°/90°/45°/Al 7 Al/90°/0°/–45°/Al/–45°/0°/90°/Al 2 Al/45°/90°/–45°/Al/–45°/90°/45°/Al 8 Al/90°/45°/0°/Al/0°/45°/90°/Al 3 Al/45°/0°/90°/Al/90°/0°/45°/Al 9 Al/90°/45°/–45°/Al/–45°/45°/90°/Al 4 Al/45°/0°/–45°/Al/–45°/0°/45°/Al 10 Al/90°/–45°/0°/Al/0°/–45°/90°/Al 5 Al/45°/–45°/0°/Al/0°/–45°/45°/Al 11 Al/0°/45°/–45°/Al/–45°/45°/0°/Al 6 Al/45°/–45°/90°/Al/90°/–45°/45°/Al 12 Al/0°/90°/–45°/Al/–45°/90°/0°/Al 表 7 设计因子水平
Table 7. Design factor levels
设计因子 低水平 高水平 $ {\alpha _1} $ 0.029 0.200 $ {\alpha _2} $ 0.029 0.200 $ {\alpha _3} $ 0.029 0.200 $ {\alpha _4} $ 0.200 0.457 表 8 BBD实验设计
Table 8. Experimental schemes designed by the BBD method
实验方案 $ {\alpha _1} $ $ {\alpha _2} $ $ {\alpha _3} $ $ {\alpha _4} $ $Q/({\rm{J}} \cdot {\rm{kg}^{ - 1} })$ ${Q_{\rm{{pre}}} }/({\rm{J} } \cdot {\rm{kg}^{ - 1} })$ 1 –1 0 0 –1 982.58 983.58 2 0 0 –1 1 820.35 815.75 3 1 0 0 –1 1 032.25 1 041.37 4 0 0 0 0 799.74 799.74 5 0 –1 0 –1 979.84 965.03 6 –1 0 0 1 675.37 671.43 7 –1 1 0 0 836.94 847.07 8 1 –1 0 0 846.44 859.65 9 0 0 –1 –1 1 135.93 1 143.95 10 –1 0 1 0 780.02 754.93 11 1 0 –1 0 1 015.36 1 002.85 12 0 –1 –1 0 914.80 912.54 13 –1 –1 0 0 730.39 746.48 14 0 1 0 1 808.02 808.85 15 1 1 0 0 960.88 960.23 16 1 0 1 0 881.44 868.10 17 0 0 0 0 799.74 799.74 18 0 0 1 –1 913.77 937.77 19 0 0 0 0 799.74 799.74 20 0 1 –1 0 976.15 985.71 21 0 0 1 1 741.05 752.42 22 1 0 0 1 835.80 839.97 23 –1 0 –1 0 887.89 889.69 24 0 1 0 –1 1 092.94 1 065.62 25 0 –1 0 1 716.09 708.26 26 0 –1 1 0 754.74 750.36 27 0 1 1 0 870.92 878.37 表 9 方差分析和参数估计
Table 9. Analysis of variance and parameter estimation
方差来源 平方和 自由度 均方 F P 模型 366 000.00 11 33 247.56 156.55 < 0.000 1 $ {\alpha _1} $ 38 416.01 1 38 416.01 180.89 < 0.000 1 $ {\alpha _2} $ 30 354.44 1 30 354.44 142.93 < 0.000 1 $ {\alpha _3} $ 54 478.75 1 54 478.75 256.52 < 0.000 1 $ {\alpha _4} $ 198 000.00 1 198 000.00 931.36 < 0.000 1 $ {\alpha _1} \times {\alpha _4} $ 3 066.78 1 3 066.78 14.44 0.001 4 $ {\alpha _2} \times {\alpha _3} $ 751.72 1 751.72 3.54 0.077 2 $ {\alpha _3} \times {\alpha _4} $ 5 101.74 1 4 179.89 24.02 0.000 1 $ {\alpha _1} \times {\alpha _1} $ 4 179.89 1 5 170.59 19.68 0.000 4 $ {\alpha _2} \times {\alpha _2} $ 5 170.59 1 18 752.36 24.35 0.000 1 $ {\alpha _3} \times {\alpha _3} $ 18 752.36 1 22 551.08 88.30 < 0.000 1 $ {\alpha _4} \times {\alpha _4} $ 22 551.08 1 3 066.78 106.19 < 0.000 1 残差 3 610.39 17 212.38 总和 370 000.00 28 $ {R^2} $ 0.99 $R_{\rm{{adj}}}^2$ 0.98 表 10 遗传算法优化结果
Table 10. Genetic algorithm optimization results
实验方案 $ {\alpha _1} $ $ {\alpha _2} $ $ {\alpha _3} $ $ {\alpha _4} $ $Q/({\rm{{J}}} \cdot {\rm{kg}^{ - 1} })$ 优化 0.183 0.198 0.041 0.217 1186.0 表 11 优化前后层合板主要参数
Table 11. The main parameters of original and optimized laminates
层合板方案 $ {t_1}/{\text{mm}} $ $ {t_2}/{\text{mm}} $ $ {t_3}/{\text{mm}} $ $ {t_4}/{\text{mm}} $ $t_{0}/{\text{mm} }$ $m/{\text{g} }$ $Q/({\rm{{J}}} \cdot {\rm{kg}^{ - 1} })$ 原方案 0.50 0.50 0.50 1.00 3.50 78.70 882.12 优化后 0.64 0.69 0.14 0.76 3.00 69.50 1192.66 -
[1] REYES VILLANUEVA G, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology, 2004, 64(1): 35–54. DOI: 10.1016/S0266-3538(03)00197-0. [2] KABOGLU C, MOHAGHEGHIAN I, ZHOU J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53: 4209–4228. DOI: 10.1007/s10853-017-1871-2. [3] SANTIAGO R, CANTWELL W, ALVES M. Impact on thermoplastic fibre-metal laminates: experimental observations [J]. Composite Structures, 2017, 159: 800–817. DOI: 10.1006/j.compstruct.2016.10.011. [4] 曾漾, 周俊, 沈志远, 等. 基于响应面法的复合材料舱壁结构优化设计 [J]. 重庆大学学报, 2020, 43(6): 82–89. DOI: 10.11835/j.issn.1000-582X.2020.292.ZENG Y, ZHOU J, SHEN Z Y, et al. Optimization design of composite bulkhead structure based on response surface method [J]. Journal of Chongqing University, 2020, 43(6): 82–89. DOI: 10.11835/j.issn.1000-582X.2020.292. [5] 周晓松, 梅志远. 舰船复合材料夹层板架结构的分级递进优化设计方法 [J]. 中国舰船研究, 2014, 9(4): 63–69. DOI: 10.3969/j.issn.1673-3185.2014.04.010.ZHOU X S, MEI Z Y. Hierarchical progressive optimum design method for composite stiffened panels of warships [J]. Chinese Journal of Ship Research, 2014, 9(4): 63–69. DOI: 10.3969/j.issn.1673-3185.2014.04.010. [6] 刘伟先, 穆雪峰, 曾果. 复合材料蜂窝夹层进气道结构优化设计方法 [J]. 南京航空航天大学学报, 2018, 50(1): 86–90. DOI: 10.16356/j.1005-2615.2018.01.012.LIU W X, MU X F, ZENG G. Optimization design of composite honeycomb sandlayer inlet structure [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(1): 86–90. DOI: 10.16356/j.1005-2615.2018.01.012. [7] 胡春幸, 侯玉亮, 铁瑛, 等. 基于遗传算法的碳纤维增强树脂复合材料层合板单搭胶接结构的多目标优化 [J]. 复合材料学报, 2021, 38(6): 1847–1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001.HU C X, HOU Y L, TIE Y, et al. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced polymer laminates based on genetic algorithm [J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1847–1858. DOI: 10.13801/j.cnki.fhclxb.20200824.001. [8] 胡春幸, 侯玉亮, 铁瑛, 等. 不同胶接参数对CFRP层合板单搭胶接结构强度的影响及优化设计 [J]. 机械工程学报, 2021, 57(8): 154–165. DOI: 10.3901/JME.2021.08.154.HU C X, HOU Y L, TIE Y, et al. Influence of different bonding parameters on the strength of CFRP laminates with single lap bonding structure and optimization [J]. Journal of Mechanical Engineering, 2021, 57(8): 154–165. DOI: 10.3901/JME.2021.08.154. [9] MOSTOFI T M, SAYAH-BADKHOR M, REZASEFAT M, et al. Gas mixture detonation load on polyurea-coated aluminum plates [J]. Thin-Walled Structures, 2020, 155: 106851. DOI: 10.1016/j.tws.2020.106851. [10] 王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究 [J]. 振动与冲击, 2018, 37(7): 172–178. DOI: 10.13465/j.cnki.jvs.2018.07.026.WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes [J]. Journal of Vibration and Shock, 2018, 37(7): 172–178. DOI: 10.13465/j.cnki.jvs.2018.07.026. [11] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计 [J]. 复合材料学报, 2018, 35(4): 866–875. DOI: 10.13801/j.cnki.fhclxb.20170705.001.GU J F, CHEN P H, KONG B, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors [J]. Acta Materiae Compositae Sinica, 2018, 35(4): 866–875. DOI: 10.13801/j.cnki.fhclxb.20170705.001. [12] 冯振宇, 苏璇, 赵彦强, 等. 含概率不确定性的复合材料吸能结构优化设计方法研究 [J]. 振动与冲击, 2019, 38(11): 101–109. DOI: 10.13465/j.cnki.jvs.2019.11.016.FENG Z Y, SU X, ZHAO Y Q, et al. Optimization design method for energy-absorbing composite structure with probabilistic uncertainty [J]. Journal of Vibration and Shock, 2019, 38(11): 101–109. DOI: 10.13465/j.cnki.jvs.2019.11.016. [13] CUTOLO A, CAROTENUTO A R, PALUMBO S, et al. Stacking sequences in composite laminates through design optimization [J]. Meccanica, 2021, 56: 1555–1574. DOI: 10.1007/s11012-020-01233-y. [14] GHASHOCHI-BARGH H, SADR M H. PSO algorithm for fundamental frequency optimization of fiber metal laminated panels [J]. Structural Engineering and Mechanics, 2013, 47(5): 713–727. DOI: 10.12989/sem.2013.47.5.713. [15] ARHORE E G, YASAEE M, et al. Lay-up optimisation of fibre-metal laminates panels for maximum impact absorption [J]. Journal of Composite Materials, 2020, 54(29): 4591–4609. DOI: 10.1177/0021998320937396. [16] SITNIKOVA E, GUAN Z W, CANTWELL W J. The analysis of the ultimate blast failure modes in fibre metal laminates [J]. Composites Science and Technology, 2016, 135: 1–12. DOI: 10.1016/j.compscitech.2016.09.006. [17] 王耀先. 复合材料结构设计 [M]. 北京: 化学工业出版社, 2001.