Mechanical behavior of concrete-filled steel tubular columns subjected to coupled fire and impact loading
-
摘要: 为研究火灾高温与撞击联合作用下钢管混凝土柱的力学性能,基于ABAQUS建立了高温作用下考虑轴力影响的钢管混凝土柱侧向撞击有限元模型。首先,对高温与撞击联合作用下考虑轴力影响的钢管混凝土柱的破坏模式与受力全过程进行了分析,探讨了高温下钢管混凝土柱的抗撞性能与工作机理;其次,重点研究了受火时间、材料强度、含钢率以及撞击能量对抗撞性能的影响,并给出了相关设计建议。研究结果表明:高温与撞击联合作用下,钢管混凝土柱主要发生受弯破坏;受火15 min后,构件抗撞性能明显降低。轴压力对构件抗撞性能产生不利影响,轴压比从0增加到0.2,受火60 min构件抗撞性能下降了7.8%;混凝土强度对高温下钢管混凝土柱抗撞性能有显著影响,受火90 min后,混凝土强度由30 MPa增加到50 MPa,构件抗撞性能提高约85%;外钢管强度与含钢率对高温下抗撞性能影响不大。Abstract: To investigate the mechanical behavior of concrete-filled steel tubular (CFST) columns under coupled fire and impact loads, a finite element (FE) model was established with ABAQUS software to describe the impact resistance of axial-loaded CFST columns under elevated temperatures. The commonly used ISO 834 standard fire and rigid-body impact were employed to model the fire and impact loads, respectively. In the model, the static implicit and dynamic explicit analysis were coupled by using “Restart” and “Import” commands and the strain-rate effect was taken into account. The numerical model was validated by comparing the impact force time history curves obtained from relevant tests at different temperatures. Based on the validated FE models, the impact responses of axial-loaded CFST columns under coupled fire and impact loads were analyzed. Then, the influences of the fire duration, concrete and steel strength, steel ratio and impact energy on the mechanical behavior were investigated, and some design suggestions were proposed. The platform impact force and the maximum mid-span deflection were employed to quantitatively analyze the impact resistance of the CFST columns. The results show that the CFST column presents a flexural failure mode when it is exposed to coupled fire and impact loads. With the increase of fire duration, the proportion of energy consumption of the steel tube reduces. The impact resistance of the column decreases obviously when it is subjected to fire for a duration of 15 min. Axial compression load has an adverse influence on the impact performance. When the axial-load level increases from 0 to 0.2, the platform value of the impact force reduces by 7.8% at a fire duration of 60 min. The concrete strength has a significant effect on the impact resistance. When the cubic compressive strength of the concrete increases from 30 MPa to 50 MPa, the impact resistance is improved by approximately 85% when the fire lasts for 90 min. The steel ratio and steel strength have marginal influences on the impact resistance of the CFST columns at elevated temperatures.
-
Key words:
- impact-resistance /
- fire /
- concrete-filled steel tube /
- mechanisms analysis /
- axial-load level
-
表 1 构件详细参数
Table 1. Detailed parameters of specimens
组别 构件编号 D0×ts/mm n t0/min m0/kg v0/(m·s−1) fcu/MPa fy/MPa 不加轴力 W0 400×8 0 0 2000 7 40 345 W3 400×8 0 30 2000 7 40 345 W6 400×8 0 60 2000 7 40 345 W9 400×8 0 90 2000 7 40 345 加轴力 Z0 400×8 0.2 0 2000 7 40 345 Z3 400×8 0.2 30 2000 7 40 345 Z6 400×8 0.2 60 2000 7 40 345 -
[1] HUO J S, ZHENG Q, CHEN B, et al. Tests on impact behaviour of micro-concrete-filled steel tubes at elevated temperatures up to 400℃ [J]. Materials and Structures, 2009, 42(10): 1325–1334. DOI: 10.1617/s11527-008-9452-0. [2] 何远明. 高温下钢管混凝土SHPB抗冲击性能试验研究和理论分析[D]. 长沙: 湖南大学, 2011.HE Y M. Experimental and numerical study on SHPB impact behaviors of comcrete-filled steel tube at elevate temperatures [D]. Changsha: Hunan University, 2011. [3] 霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009. [4] JIN L, ZHANG R B, LI L, et al. Impact behavior of SFRC beams at elevated temperatures: experimental and analytical studies [J]. Engineering Structures, 2019, 197: 109401. DOI: 10.1016/j.engstruct.2019.109401. [5] 丛珊. 高温下钢框架抗冲击性能及梁柱连接性能的实验和数值模拟分析[D]. 济南: 山东建筑大学, 2018.CONG S. Experimental and numerical simulation analysis on impact resistance and beam-column connection performance of steel frames at elevated temperatures [D]. Jinan: Shandong Jianzhu University, 2018. [6] 史艳莉, 纪孙航, 王文达, 等. 高温作用下钢管混凝土构件侧向撞击性能 [J]. 爆炸与冲击, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293.SHI Y L, JI S H, WANG W D, et al. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures [J]. Explosion and Shock Waves, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293. [7] International Organization for Standardization. Fire-resistance tests: elements of building construction: Part 1: general requirements: ISO 834-1—1999 [S]. 1999. [8] 王蕊, 李珠, 任够平, 等. 钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟 [J]. 土木工程学报, 2007(10): 34–40. DOI: 10.15951/j.tmgcxb.2007.10.010.WANG R, LI Z, REN G P, et al. Experimental study and numerical simulation of the dynamic response of concrete filled steel tubes under lateral impact load [J]. China Civil Engineering Journal, 2007(10): 34–40. DOI: 10.15951/j.tmgcxb.2007.10.010. [9] 姜珊, 王蕊. 中空夹层不锈钢钢管混凝土构件的侧向撞击试验及有限元分析 [J]. 工业建筑, 2016, 46(11): 161–167. DOI: 10.13204/j.gyjz201611031.JIANG S, WANG R. Experiment study and finite element analysis of concrete filled stainless and steel double skin tubes member under lateral impact [J]. Industrial Construction, 2016, 46(11): 161–167. DOI: 10.13204/j.gyjz201611031. [10] 任够平. 预加轴力的钢管混凝土构件受刚性块侧向冲击的动力响应分析[D]. 太原: 太原理工大学, 2009.REN G P. On dynamic responses of axially preloaded concrete filled steel tubular members under lateral impact by a rigid body [D]. Taiyuan: Taiyuan University of Technology, 2009. [11] WANG R, HANG L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279–295. DOI: 10.1016/j.tws.2015.09.009. [12] ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless-steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 10638. DOI: 10.1016/j.tws.2019.106380. [13] LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10. 1061/(ASCE)0733-9445(1996)122: 1(30). [14] HONG S, VARMA A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Applied Physics, 2009, 65(1): 54–69. DOI: 10.1016/j.jcsr.2008.04.008. [15] British Standard Institution. Design of steel structures: part 1-2: general rules: structural fire design: EN 1993-1-2—2005[S]. 2005. [16] 刘发起. 三面受火的矩形钢管混凝土柱抗火性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.LIU F Q. Fire resistance of concrete filled RHS columns under three-surface fire loading [D]. Harbin: Harbin Institute of Technology, 2010. [17] 韩林海. 钢管混凝土结构理论与实践[M]. 北京: 科学出版社, 2016.HAN L H. Concrete filled steel tubular structures theory and practice [M]. Beijing: Science Press, 2016. [18] DING J, WANG Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire [J]. Journal of Constructional Steel Research, 2008, 64(10): 1086–1092. DOI: 10.1016/j.jcsr.2007.09.014. [19] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012.HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012. [20] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606). [21] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 4056. DOI: 10.1016/j.ijimpeng.2015.07.002. [22] ZHAO H, WANG R, LI Q M, et al. Experimental and numerical investigation on impact and post-impact behaviours of H-shaped steel members [J]. Engineering Structures, 2020, 216: 110750. DOI: 10.1016/j.engstruct.2020.110750. [23] WANG Y, QIAN X D, LIEW J Y, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact [J]. International Journal of Impact Engineering, 2014, 72: 1–16. DOI: 10.1016/j.ijimpeng.2014.05.004.