火灾与撞击联合作用下钢管混凝土柱力学性能研究

胡文伟 王蕊 赵晖 张力

胡文伟, 王蕊, 赵晖, 张力. 火灾与撞击联合作用下钢管混凝土柱力学性能研究[J]. 爆炸与冲击, 2022, 42(2): 023102. doi: 10.11883/bzycj-2021-0151
引用本文: 胡文伟, 王蕊, 赵晖, 张力. 火灾与撞击联合作用下钢管混凝土柱力学性能研究[J]. 爆炸与冲击, 2022, 42(2): 023102. doi: 10.11883/bzycj-2021-0151
HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Mechanical behavior of concrete-filled steel tubular columns subjected to coupled fire and impact loading[J]. Explosion And Shock Waves, 2022, 42(2): 023102. doi: 10.11883/bzycj-2021-0151
Citation: HU Wenwei, WANG Rui, ZHAO Hui, ZHANG Li. Mechanical behavior of concrete-filled steel tubular columns subjected to coupled fire and impact loading[J]. Explosion And Shock Waves, 2022, 42(2): 023102. doi: 10.11883/bzycj-2021-0151

火灾与撞击联合作用下钢管混凝土柱力学性能研究

doi: 10.11883/bzycj-2021-0151
基金项目: 中国博士后科学基金(2020M670656);山西省留学回国人员科技活动择优资助项目(20210010)
详细信息
    作者简介:

    胡文伟(1998- ),男,硕士研究生,huwenwei00@163.com

    通讯作者:

    赵 晖(1988- ),男,博士,副教授,zhaohui01@tyut.edu.cn

  • 中图分类号: O389;TU398.9

Mechanical behavior of concrete-filled steel tubular columns subjected to coupled fire and impact loading

  • 摘要: 为研究火灾高温与撞击联合作用下钢管混凝土柱的力学性能,基于ABAQUS建立了高温作用下考虑轴力影响的钢管混凝土柱侧向撞击有限元模型。首先,对高温与撞击联合作用下考虑轴力影响的钢管混凝土柱的破坏模式与受力全过程进行了分析,探讨了高温下钢管混凝土柱的抗撞性能与工作机理;其次,重点研究了受火时间、材料强度、含钢率以及撞击能量对抗撞性能的影响,并给出了相关设计建议。研究结果表明:高温与撞击联合作用下,钢管混凝土柱主要发生受弯破坏;受火15 min后,构件抗撞性能明显降低。轴压力对构件抗撞性能产生不利影响,轴压比从0增加到0.2,受火60 min构件抗撞性能下降了7.8%;混凝土强度对高温下钢管混凝土柱抗撞性能有显著影响,受火90 min后,混凝土强度由30 MPa增加到50 MPa,构件抗撞性能提高约85%;外钢管强度与含钢率对高温下抗撞性能影响不大。
  • 图  1  温度-撞击耦合分析过程

    Figure  1.  Procedure of coupled temperature and impact analysis

    图  2  试件破坏形态对比

    Figure  2.  Comparison of the failure modes of specimens

    图  3  试验值与模拟值对比

    Figure  3.  Comparison between test and FE results

    图  4  构件温度场分布

    Figure  4.  Temperature distribution of specimens

    图  5  有轴力构件Z6轴向变形与荷载分配

    Figure  5.  Axial displacement and load distribution of Z6

    图  6  构件撞击力-跨中挠度曲线

    Figure  6.  Impact force versus mid-span deflection curves of specimens

    图  7  构件等效塑性应变

    Figure  7.  Equivalent plastic strain of specimens

    图  8  归一化时程曲线

    Figure  8.  Normalized time-histories curves

    图  9  有轴力构件Z6跨中截面接触应力时程曲线

    Figure  9.  Contact stress-time curves of Z6 with axial load at midspan

    图  10  钢管跨中截面应力-纵向应变曲线

    Figure  10.  Changes in the longitudinal stresses of steel tube

    图  11  钢管与核心混凝土纵向应力变化

    Figure  11.  Longitudinal stress change of steel tube and core concrete

    图  12  塑性应变能曲线

    Figure  12.  Plastic strain energy curves

    图  13  各部件耗能占比

    Figure  13.  Energy dissipation proportions of each components

    图  14  撞击质量的影响

    Figure  14.  Influence of impactor mass

    图  15  撞击速度的影响

    Figure  15.  Influence of impact velocity

    图  16  受火时间的影响

    Figure  16.  Influence of fire duration

    图  17  含钢率α的影响

    Figure  17.  Influence of steel ratio

    图  18  材料强度的影响

    Figure  18.  Influence of material strength

    表  1  构件详细参数

    Table  1.   Detailed parameters of specimens

    组别构件编号D0×ts/mmnt0/minm0/kgv0/(m·s−1fcu/MPafy/MPa
    不加轴力W0400×8002000740345
    W3400×80302000740345
    W6400×80602000740345
    W9400×80902000740345
    加轴力Z0400×80.202000740345
    Z3400×80.2302000740345
    Z6400×80.2602000740345
    下载: 导出CSV
  • [1] HUO J S, ZHENG Q, CHEN B, et al. Tests on impact behaviour of micro-concrete-filled steel tubes at elevated temperatures up to 400℃ [J]. Materials and Structures, 2009, 42(10): 1325–1334. DOI: 10.1617/s11527-008-9452-0.
    [2] 何远明. 高温下钢管混凝土SHPB抗冲击性能试验研究和理论分析[D]. 长沙: 湖南大学, 2011.

    HE Y M. Experimental and numerical study on SHPB impact behaviors of comcrete-filled steel tube at elevate temperatures [D]. Changsha: Hunan University, 2011.
    [3] 霍静思, 任晓虎, 肖岩. 标准火灾作用下钢管混凝土短柱落锤动态冲击试验研究 [J]. 土木工程学报, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.

    HUO J S, REN X H, XIAO Y. Impact behavior of concrete-filled steel tubular stub columns under ISO-834 standard fire [J]. China Civil Engineering Journal, 2012, 45(4): 9–20. DOI: 10.15951/j.tmgcxb.2012.04.009.
    [4] JIN L, ZHANG R B, LI L, et al. Impact behavior of SFRC beams at elevated temperatures: experimental and analytical studies [J]. Engineering Structures, 2019, 197: 109401. DOI: 10.1016/j.engstruct.2019.109401.
    [5] 丛珊. 高温下钢框架抗冲击性能及梁柱连接性能的实验和数值模拟分析[D]. 济南: 山东建筑大学, 2018.

    CONG S. Experimental and numerical simulation analysis on impact resistance and beam-column connection performance of steel frames at elevated temperatures [D]. Jinan: Shandong Jianzhu University, 2018.
    [6] 史艳莉, 纪孙航, 王文达, 等. 高温作用下钢管混凝土构件侧向撞击性能 [J]. 爆炸与冲击, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293.

    SHI Y L, JI S H, WANG W D, et al. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures [J]. Explosion and Shock Waves, 2020, 40(4): 043303. DOI: 10.11883/bzycj-2019-0293.
    [7] International Organization for Standardization. Fire-resistance tests: elements of building construction: Part 1: general requirements: ISO 834-1—1999 [S]. 1999.
    [8] 王蕊, 李珠, 任够平, 等. 钢管混凝土梁在侧向冲击荷载作用下动力响应的试验研究和数值模拟 [J]. 土木工程学报, 2007(10): 34–40. DOI: 10.15951/j.tmgcxb.2007.10.010.

    WANG R, LI Z, REN G P, et al. Experimental study and numerical simulation of the dynamic response of concrete filled steel tubes under lateral impact load [J]. China Civil Engineering Journal, 2007(10): 34–40. DOI: 10.15951/j.tmgcxb.2007.10.010.
    [9] 姜珊, 王蕊. 中空夹层不锈钢钢管混凝土构件的侧向撞击试验及有限元分析 [J]. 工业建筑, 2016, 46(11): 161–167. DOI: 10.13204/j.gyjz201611031.

    JIANG S, WANG R. Experiment study and finite element analysis of concrete filled stainless and steel double skin tubes member under lateral impact [J]. Industrial Construction, 2016, 46(11): 161–167. DOI: 10.13204/j.gyjz201611031.
    [10] 任够平. 预加轴力的钢管混凝土构件受刚性块侧向冲击的动力响应分析[D]. 太原: 太原理工大学, 2009.

    REN G P. On dynamic responses of axially preloaded concrete filled steel tubular members under lateral impact by a rigid body [D]. Taiyuan: Taiyuan University of Technology, 2009.
    [11] WANG R, HANG L H, ZHAO X L, et al. Experimental behavior of concrete filled double steel tubular (CFDST) members under low velocity drop weight impact [J]. Thin-Walled Structures, 2015, 97: 279–295. DOI: 10.1016/j.tws.2015.09.009.
    [12] ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless-steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 10638. DOI: 10.1016/j.tws.2019.106380.
    [13] LIE T T, KODUR V K R. Fire resistance of steel columns filled with bar-reinforced concrete [J]. Journal of Structural Engineering, 1996, 122(1): 30–36. DOI: 10. 1061/(ASCE)0733-9445(1996)122: 1(30).
    [14] HONG S, VARMA A H. Analytical modeling of the standard fire behavior of loaded CFT columns [J]. Journal of Applied Physics, 2009, 65(1): 54–69. DOI: 10.1016/j.jcsr.2008.04.008.
    [15] British Standard Institution. Design of steel structures: part 1-2: general rules: structural fire design: EN 1993-1-2—2005[S]. 2005.
    [16] 刘发起. 三面受火的矩形钢管混凝土柱抗火性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LIU F Q. Fire resistance of concrete filled RHS columns under three-surface fire loading [D]. Harbin: Harbin Institute of Technology, 2010.
    [17] 韩林海. 钢管混凝土结构理论与实践[M]. 北京: 科学出版社, 2016.

    HAN L H. Concrete filled steel tubular structures theory and practice [M]. Beijing: Science Press, 2016.
    [18] DING J, WANG Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire [J]. Journal of Constructional Steel Research, 2008, 64(10): 1086–1092. DOI: 10.1016/j.jcsr.2007.09.014.
    [19] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012.

    HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012.
    [20] CHEN H, LIEW J Y. Explosion and fire analysis of steel frames using mixed element approach [J]. Journal of Engineering Mechanics, 2005, 131(6): 606–616. DOI: 10.1061/(ASCE)0733-9399(2005)131:6(606).
    [21] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 4056. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [22] ZHAO H, WANG R, LI Q M, et al. Experimental and numerical investigation on impact and post-impact behaviours of H-shaped steel members [J]. Engineering Structures, 2020, 216: 110750. DOI: 10.1016/j.engstruct.2020.110750.
    [23] WANG Y, QIAN X D, LIEW J Y, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact [J]. International Journal of Impact Engineering, 2014, 72: 1–16. DOI: 10.1016/j.ijimpeng.2014.05.004.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  210
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-07-05
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回